L2-Cohomology of hyperkahler quotients

被引:40
作者
Hitchin, N [1 ]
机构
[1] Math Inst, Oxford OX1 3LB, England
关键词
D O I
10.1007/s002200050806
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using an argument of Jest and Zuo, we give a criterion which implies that the L-2 harmonic forms on a complete noncompact hyperkahler manifold lie in the middle dimension and are invariant under the isometry group. This is applied to various examples, and in particular gives a verification of some of the predictions of Sen on monopole moduli spaces.
引用
收藏
页码:153 / 165
页数:13
相关论文
共 22 条
[1]  
[Anonymous], 1990, FUNKTSIONAL ANAL PRI
[2]   CONSTRUCTION OF INSTANTONS [J].
ATIYAH, MF ;
HITCHIN, NJ ;
DRINFELD, VG ;
MANIN, YI .
PHYSICS LETTERS A, 1978, 65 (03) :185-187
[3]  
BALDWIN P, 1999, THESIS CAMBRIDGE
[4]  
CALABI E, 1979, ANN SCI ECOLE NORM S, V12, P269
[5]  
DERHAM G, 1988, DIFFERENTIAL MANIFOL
[6]   VANISHING THEOREMS FOR SQUARE-INTEGRABLE HARMONIC FORMS [J].
DODZIUK, J .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1981, 90 (01) :21-27
[7]   The Sen conjecture for fundamental monopoles of distinct types [J].
Gibbons, GW .
PHYSICS LETTERS B, 1996, 382 (1-2) :53-59
[8]  
GROMOV M, 1991, J DIFFER GEOM, V33, P263
[9]  
HAUSEL T, 1998, ADV THEOR MATH PHYS, V2, P1011
[10]  
Hitchin N.J., 1999, SURVEYS DIFFERENTIAL, V4, P21