Orientation of mineral crystallites and mineral density during skeletal development in mice deficient in tissue nonspecific alkaline phosphatase

被引:43
作者
Tesch, W
Vandenbos, T
Roschgr, P
Fratzl-Zelman, N
Klaushofer, K
Beertsen, W
Fratzl, P
机构
[1] Univ Leoben, Erich Schmid Inst Mat Sci, Austrian Acad Sci, Inst Met Phys, A-8700 Leoben, Austria
[2] Hanusch Hosp, Ludwig Boltzmann Inst Osteol, Dept Med 4, Vienna, Austria
[3] UKH Meidling, Vienna, Austria
[4] Acad Ctr Dent Amsterdam, Dept Periodontol, Amsterdam, Netherlands
关键词
mineralization; tissue nonspecific alkaline phosphatase; skeletal development; small angle X-ray scattering; quantitative backscattered electron microscopy; osteopontin;
D O I
10.1359/jbmr.2003.18.1.117
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Tissue nonspecific alkaline phosphatase (TNALP) is thought to play an important role in mineralization processes, although its exact working mechanism is not known. In the present investigation we have studied mineral crystal characteristics in the developing skeleton of TNALP-deficient mice. Null mutants (n = 7) and their wild-type littermates (n = 7) were bred and killed between 8 and 22 days after birth. Skeletal tissues were processed to assess mineral characteristics (small angle X-ray scattering, quantitative backscattered electron imaging), and to analyze bone by light microscopy and immunolabeling. The results showed a reduced longitudinal growth and a strongly delayed epiphyseal ossification in the null mutants. This was accompanied by disturbances in mineralization pattern, in that crystallites were not orderly aligned with respect to the longitudinal axis of the cortical bone. Among the null mutants, a great variability in the mineralization parameters was noticed. Also, immunolabeling of osteopontin (OPN) revealed an abnormal distribution pattern of the protein within the bone matrix. Whereas in the wild-type animals OPN was predominantly observed in cement and reversal lines, in the null mutants, OPN was also randomly dispersed throughout the nonmineralized matrix, with focal densities. In contrast, the distribution pattern of osteocalcin (OC) was comparable in both types of animals. It is concluded that ablation of TNALP results not only in hypomineralization of the skeleton, but also in a severe disorder of the mineral crystal alignment pattern in the corticalis of growing long bone in association with a disordered matrix architecture, presumably as a result of impaired bone remodeling and maturation.
引用
收藏
页码:117 / 125
页数:9
相关论文
共 41 条
[1]  
Anderson HC, 1997, AM J PATHOL, V151, P1555
[2]   Root development in mice lacking functional tissue non-specific alkaline phosphatase gene: Inhibition of acellular cementum formation [J].
Beertsen, W ;
VandenBos, T ;
Everts, V .
JOURNAL OF DENTAL RESEARCH, 1999, 78 (06) :1221-1229
[3]  
BOSKEY AL, 1992, CLIN ORTHOP RELAT R, P244
[4]  
CHAMBERS TJ, 1985, J CELL SCI, V76, P155
[5]  
CHEN J, 1994, HISTOCHEM J, V26, P67
[6]  
CHEN Y, 1992, J BIOL CHEM, V267, P24871
[7]   CALCIUM AND PHOSPHATE FLUXES ACROSS THE FETAL MEMBRANES OF THE GUINEA-PIG - INVITRO MEASUREMENT [J].
DEREWLANY, LO ;
MCKERCHER, HG ;
RADDE, IC .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1983, 110 (02) :438-442
[8]   Alkaline phosphatase knock-out mice recapitulate the metabolic and skeletal defects of infantile hypophosphatasia [J].
Fedde, KN ;
Blair, L ;
Silverstein, J ;
Coburn, SP ;
Ryan, LM ;
Weinstein, RS ;
Waymire, K ;
Narisawa, S ;
Millán, JL ;
Macgregor, GR ;
Whyte, MP .
JOURNAL OF BONE AND MINERAL RESEARCH, 1999, 14 (12) :2015-2026
[9]  
FRATZL P, 1992, J BONE MINER RES, V7, P329
[10]   NUCLEATION AND GROWTH OF MINERAL CRYSTALS IN BONE STUDIED BY SMALL-ANGLE X-RAY-SCATTERING [J].
FRATZL, P ;
FRATZLZELMAN, N ;
KLAUSHOFER, K ;
VOGL, G ;
KOLLER, K .
CALCIFIED TISSUE INTERNATIONAL, 1991, 48 (06) :407-413