Fabrication and characterization of a multiwell array SERS chip with biological applications

被引:71
作者
Abell, J. L. [1 ]
Driskell, J. D. [2 ]
Dluhy, R. A. [3 ]
Tripp, R. A. [2 ]
Zhao, Y. -P. [4 ]
机构
[1] Univ Georgia, Nanoscale Sci & Engn Ctr, Dept Biol & Agr Engn, Athens, GA 30602 USA
[2] Univ Georgia, Nanoscale Sci & Engn Ctr, Dept Infect Dis, Athens, GA 30602 USA
[3] Univ Georgia, Nanoscale Sci & Engn Ctr, Dept Chem, Athens, GA 30602 USA
[4] Univ Georgia, Nanoscale Sci & Engn Ctr, Dept Phys & Astron, Athens, GA 30602 USA
基金
美国国家科学基金会;
关键词
SERS; Silver nanorod array; Viral detection; Multiwell array; Patterned substrate; Microtiter; SURFACE-ENHANCED RAMAN; SILVER; SCATTERING; SPECTROSCOPY; PYRIDINE; NANOPARTICLES; DEPOSITION;
D O I
10.1016/j.bios.2009.05.039
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Uniform, large surface area substrates for surface-enhanced Raman spectroscopy (SERS) are fabricated by oblique angle deposition. The SERS-active substrates are patterned by a polymer-molding technique to provide a uniform array for high throughput biosensing and multiplexing. Using a conventional SERS-active molecule, 1,2-di(4-pyridyl)ethylene (BPE) >= 98%, we show that this device provides a uniform Raman signal enhancement from well to well with a detection limit of at least 10(-8) M of the BPE solution or 10(-18) mol of BPE. The SERS intensity is also demonstrated to vary logarithmically with the log of BPE concentration and the apparent sensitivity of the patterned substrate is compared to previous reports from our group on non-Patterned substrates. Avian influenza is analyzed to demonstrate the utility of SERS multiwell patterned substrates for biosensing. The spectra acquired from patterned substrates show better reproducibility and less variation compared to the unpatterned substrates according to multivariate analysis. Our results highlight potential advantages of the patterned substrate. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:3663 / 3670
页数:8
相关论文
共 29 条
[1]   Disposable, stable media for reproducible surface-enhanced Raman spectroscopy [J].
Bell, SEJ ;
Spence, SJ .
ANALYST, 2001, 126 (01) :1-3
[2]   A SURFACE ENHANCED RAMAN-SPECTROSCOPY STUDY OF THE CORROSION-INHIBITING PROPERTIES OF BENZIMIDAZOLE AND BENZOTRIAZOLE ON COPPER [J].
CARRON, KT ;
GI, X ;
LEWIS, ML .
LANGMUIR, 1991, 7 (01) :2-4
[3]   Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates [J].
Chaney, SB ;
Shanmukh, S ;
Dluhy, RA ;
Zhao, YP .
APPLIED PHYSICS LETTERS, 2005, 87 (03)
[4]   A high sensitive fiber SERS probe based on silver nanorod arrays [J].
Chu, HsiaoYun ;
Liu, Yongjun ;
Huang, Yaowen ;
Zhao, Yiping .
OPTICS EXPRESS, 2007, 15 (19) :12230-12239
[5]   TIME DEVELOPMENT OF SERS FROM PYRIDINE, PYRIMIDINE, PYRAZINE, AND CYANIDE ADSORBED ON AG ELECTRODES DURING AN OXIDATION-REDUCTION CYCLE [J].
DORNHAUS, R ;
LONG, MB ;
BENNER, RE ;
CHANG, RK .
SURFACE SCIENCE, 1980, 93 (01) :240-262
[6]   The use of aligned silver nanorod Arrays prepared by oblique angle deposition as surface enhanced Raman scattering substrates [J].
Driskell, Jeremy D. ;
Shanmukh, Saratchandra ;
Liu, Yongjun ;
Chaney, Stephen B. ;
Tang, X. -J. ;
Zhao, Y. -P. ;
Dluhy, Richard A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (04) :895-901
[7]   MULTI-ANALYTE IMMUNOASSAY [J].
EKINS, RP .
JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS, 1989, 7 (02) :155-168
[8]   RAMAN-SPECTRA OF PYRIDINE ADSORBED AT A SILVER ELECTRODE [J].
FLEISCHMANN, M ;
HENDRA, PJ ;
MCQUILLAN, AJ .
CHEMICAL PHYSICS LETTERS, 1974, 26 (02) :163-166
[9]   Discrimination of bacteria using surface-enhanced Raman spectroscopy [J].
Jarvis, RM ;
Goodacre, R .
ANALYTICAL CHEMISTRY, 2004, 76 (01) :40-47
[10]   Nanosphere lithography: Surface plasmon resonance spectrum of a periodic array of silver nanoparticles by ultraviolet-visible extinction spectroscopy and electrodynamic modeling [J].
Jensen, TR ;
Schatz, GC ;
Van Duyne, RP .
JOURNAL OF PHYSICAL CHEMISTRY B, 1999, 103 (13) :2394-2401