Zeta functions: formulas and applications

被引:36
作者
Elizalde, E
机构
[1] Univ Barcelona, Fac Fis, Dept ECM & IFAE, E-08028 Barcelona, Spain
[2] CSIC, Inst Estudis Espacials Catalunya, ES-08034 Barcelona, Spain
关键词
zeta function; analytic continuation; Chowla-Selberg formula; determinant; multiplicative anomaly; effective action;
D O I
10.1016/S0377-0427(00)00284-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The existence conditions of the zeta function of a pseudodifferential operator and the definition of determinant thereby obtained are reviewed, as well as the concept of multiplicative anomaly associated with the determinant and its calculation by means of the Wodzicki residue. Exponentially fast convergent formulas - valid in the whole of the complex plane and yielding the pole positions and residua - that extend the ones by Chowla and Selberg for the Epstein zeta function (quadratic form) and by Barnes (affine form) are then given. After briefly recalling the zeta function regularization procedure in quantum field theory, some applications of these expressions in physics are described. (C) 2000 Elsevier Science B.V. All rights reserved. MSC, 11M41; 11M35; 30B50; 30B40.
引用
收藏
页码:125 / 142
页数:18
相关论文
共 38 条
[1]  
Barnes E., 1904, T CAMBRIDGE PHILOS S, V19, P374
[2]  
Barnes E. W., 1903, T CAMB PHILOS SOC, V19, P426
[3]  
Bender C.M., 1978, Advanced mathematical methods for scientists and engineers
[4]   Casimir energies for massive scalar fields in a spherical geometry [J].
Bordag, M ;
Elizalde, E ;
Kirsten, K ;
Leseduarte, S .
PHYSICAL REVIEW D, 1997, 56 (08) :4896-4904
[5]   Trace anomaly of dilaton-coupled scalars in two dimensions [J].
Bousso, R ;
Hawking, S .
PHYSICAL REVIEW D, 1997, 56 (12) :7788-7791
[6]   Zeta functions on a product of Einstein manifolds, and the multiplicative anomaly [J].
Bytsenko, AA ;
Williams, FL .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (02) :1075-1086
[7]   ON EPSTEINS ZETA-FUNCTION (I) [J].
CHOWLA, S ;
SELBERG, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1949, 35 (07) :371-374
[8]  
Connes A., 1994, NONCOMMUTATIVE GEOME
[9]  
DOWKER JS, 1998, HEPTH9803200
[10]   Applications in physics of the multiplicative anomaly formula involving some basic differential operators [J].
Elizalde, E ;
Cognola, G ;
Zerbini, S .
NUCLEAR PHYSICS B, 1998, 532 (1-2) :407-428