Fatty acid metabolism in adipocytes: functional analysis of fatty acid transport proteins 1 and 4

被引:120
作者
Lobo, Sandra [1 ]
Wiczer, Brian M. [1 ]
Smith, Ann J. [1 ]
Hall, Angela M. [1 ]
Bernlohr, David A. [1 ]
机构
[1] Univ Minnesota, Dept Biochem Mol Biol & Biophys, Minneapolis, MN 55455 USA
关键词
fatty acid influx; basal lipolysis; triacylglycerol synthesis; acyl-coenzyme A synthetase; 2-deoxyglucose uptake;
D O I
10.1194/jlr.M600441-JLR200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The role of fatty acid transport protein 1 (FATP1) and FATP4 in facilitating adipocyte fatty acid metabolism was investigated using stable FATP1 or FATP4 knockdown (kd) 3T3-L1 cell lines derived from retrovirus-delivered short hairpin RNA (shRNA). Decreased expression of FATP1 or FATP4 did not affect preadipocyte differentiation or the expression of FATP1 (in FATP4 kd), FATP4 (in FATP1 kd), fatty acid translocase, acyl-coenzyme A synthetase 1, and adipocyte fatty acid binding protein but did lead to increased levels of peroxisome proliferator-activated receptor gamma and CCAAT/enhancer binding protein alpha. Both FATP1 and FATP4 kd adipocytes exhibited reduced triacylglycerol deposition and corresponding reductions in diacylglycerol and monoacylglycerol levels compared with control cells. FATP1 kd adipocytes displayed an similar to 25% reduction in basal 3 H-labeled 3 fatty acid uptake and a complete loss of insulin-stimulated H-labeled fatty acid uptake compared with control adipocytes. In contrast, FATP4 kd adipocytes as well as HEK-293 cells overexpressing FATP4 did not display any changes in fatty acid influx. FATP4 kd cells exhibited increased basal lipolysis, whereas FATP1 kd cells exhibited no change in lipolytic capacity. Consistent with reduced triacylglycerol accumulation, FATP1 and FATP4 kd adipocytes exhibited enhanced 2-deoxyglucose uptake compared with control adipocytes. These findings define unique and distinct roles for FATP1 and FATP4 in adipose fatty acid metabolism.
引用
收藏
页码:609 / 620
页数:12
相关论文
共 46 条
[1]   Uptake of long chain free fatty acids is selectively up-regulated in adipocytes of Zucker rats with genetic obesity and non-insulin-dependent diabetes mellitus [J].
Berk, PD ;
Zhou, SL ;
Kiang, CL ;
Stump, D ;
Bradbury, M ;
Isola, LM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (13) :8830-8835
[2]   Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes [J].
Brasaemle, DL ;
Dolios, G ;
Shapiro, L ;
Wang, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (45) :46835-46842
[3]   Characterizing the effects of saturated fatty acids on insulin signaling and ceramide and diacylglycerol accumulation in 3T3-L1 adipocytes and C2Cl2 myotubes [J].
Chavez, JA ;
Summers, SA .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2003, 419 (02) :101-109
[4]   Transgenic expression of fatty acid transport protein 1 in the heart causes lipotoxic cardiomyopathy [J].
Chiu, HC ;
Kovacs, A ;
Blanton, RM ;
Han, XL ;
Courtois, M ;
Weinheimer, CJ ;
Yamada, KA ;
Brunet, S ;
Xu, HD ;
Nerbonne, JM ;
Welch, MJ ;
Fettig, NM ;
Sharp, TL ;
Sambandam, N ;
Olson, KM ;
Ory, DS ;
Schaffer, JE .
CIRCULATION RESEARCH, 2005, 96 (02) :225-233
[5]   Defective uptake and utilization of long chain fatty acids in muscle and adipose tissues of CD36 knockout mice [J].
Coburn, CT ;
Knapp, FF ;
Febbraio, M ;
Beets, AL ;
Silverstein, RL ;
Abumrad, NA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (42) :32523-32529
[6]   Divergent effects of rosiglitazone on protein-mediated fatty acid uptake in adipose and in muscle tissues of Zucker rats [J].
Coort, SLM ;
Coumans, WA ;
Bonen, A ;
van der Vusse, GJ ;
Glatz, JFC ;
Luiken, JJFP .
JOURNAL OF LIPID RESEARCH, 2005, 46 (06) :1295-1302
[7]   Effects of pioglitazone on adipose tissue remodeling within the setting of obesity and insulin resistance [J].
de Souza, CJ ;
Eckhardt, M ;
Gagen, K ;
Dong, M ;
Chen, W ;
Laurent, D ;
Burkey, BF .
DIABETES, 2001, 50 (08) :1863-1871
[8]   Disruption of the Saccharomyces cerevisiae homologue to the murine fatty acid transport protein impairs uptake and growth on long-chain fatty acids [J].
Faergeman, NJ ;
DiRusso, CC ;
Elberger, A ;
Knudsen, J ;
Black, PN .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (13) :8531-8538
[9]   Obesity and metabolic disease: is adipose tissue the culprit? [J].
Frayn, KN .
PROCEEDINGS OF THE NUTRITION SOCIETY, 2005, 64 (01) :7-13
[10]   Identification of a functional peroxisome proliferator-responsive element in the murine fatty acid transport protein gene [J].
Frohnert, BI ;
Hui, TY ;
Bernlohr, DA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (07) :3970-3977