Finsler Laplacians and minimal-energy maps

被引:41
作者
Centore, P
机构
[1] Gales Ferry, CT 06335
关键词
D O I
10.1142/S0129167X00000027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any Finsler manifold, there is a geometrically natural Laplacian operator, called the mean-value Laplacian, which generalizes the Riemannian Laplacian. We show that, like the Riemannian Laplacian (for functions), we can see the vanishing of the mean-value Laplacian at some function f as the minimizing of an energy functional e(f) by f. This energy functional e depends on a Riemannian metric canonically associated to the Finsler metric and on a canonically associated Volume form. We relate this construction to a more general construction of Jest, and define a notion of harmonic mappings between Finsler manifolds.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 12 条
[1]  
ANTONELLI PL, 1998, IN PRESS P FINSL LAP
[2]  
ANTONELLI PL, 1998, P C FINSL LAPL
[3]  
BAO D, 1996, CR HEBD ACAD SCI, V223, P51
[4]  
BAO D, UNPUB INTRO RIEMANNF
[5]   INTRINSIC AREA [J].
BUSEMANN, H .
ANNALS OF MATHEMATICS, 1947, 48 (02) :234-267
[6]  
Cartan E., 1934, SCI IND, Vvol 79
[7]  
CENTORE P, 1998, THESIS U TORONTO
[8]  
CENTORE P, 1998, P C FINSL LAPL
[9]  
EELLS J, 1983, REGIONAL C SERIES MA, V50
[10]  
FINSLER P, 1918, THESIS GOTTINGEN