Lipid peroxidation-derived aldehydes and oxidative stress in the failing heart: role of aldose reductase

被引:75
作者
Srivastava, S
Chandrasekar, B
Bhatnagar, A
Prabhu, SD
机构
[1] Univ Louisville, Hlth Sci Ctr, Dept Med Cardiol, ACB, Louisville, KY 40202 USA
[2] Jewish Hosp Heart & Lung Inst, Louisville Vet Affairs Med Ctr, Louisville, KY 40202 USA
[3] Univ Texas, Hlth Sci Ctr, San Antonio, TX 78229 USA
来源
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY | 2002年 / 283卷 / 06期
关键词
tonicity-responsive enhancer binding protein; ventricular remodeling;
D O I
10.1152/ajpheart.00592.2002
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Lipid peroxidation-derived aldehydes (LP-DA) can propagate oxidative injury and are detoxified by the aldose reductase (AR) enzyme pathway in myocardium. Whether there are alterations in the AR axis in heart failure (HF) is unknown. Sixteen instrumented dogs were studied before and after either 24 h or 4 wk of rapid left ventricular (LV) pacing (early and late HF, respectively). Six unpaced dogs served as controls. In early HF, there was subtle depression of LV performance (maximum rate of LV pressure rise, P < 0.05 vs. baseline) but no chamber enlargement, whereas in late HF there was significant (P < 0.05) contractile depression and LV dilatation. Oxidative stress was increased at both time points, indexed by tissue malondialdehyde, total glutathione, and free C6-C9 LP-DA (P < 0.025 vs. control). AR protein levels and activity decreased progressively during HF (P < 0.025 early/late HF vs. control); however, AR mRNA expression decreased only in late HF (P < 0.005 vs. early HF and control). DNA binding of tonicity-responsive enhancer binding protein (TonEBP, a transcriptional regulator of AR) paralleled AR mRNA, declining >50% in late HF (P < 0.025 vs. control). We conclude that AR levels and attendant myocardial capacity to detoxify LP-DA decline during the development of HF. In early HF, decreased AR occurs due to a translational or posttranslational mechanism, whereas in late HF reduced TonEBP transcriptional activation and AR downregulation contribute significantly. Reduced AR-mediated LP-DA metabolism contributes importantly to LP-DA accumulation in the failing heart and thus may augment chronic oxidative injury.
引用
收藏
页码:H2612 / H2619
页数:8
相关论文
共 35 条
[1]   Reactive oxygen species mediate alpha-adrenergic receptor-stimulated hypertrophy in adult rat ventricular myocytes [J].
Amin, JK ;
Xiao, L ;
Pimental, DR ;
Pagano, PJ ;
Singh, K ;
Sawyer, DB ;
Colucci, WS .
JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2001, 33 (01) :131-139
[2]   ALDOSE REDUCTASE - CONGENIAL AND INJURIOUS PROFILES OF AN ENIGMATIC ENZYME [J].
BHATNAGAR, A ;
SRIVASTAVA, SK .
BIOCHEMICAL MEDICINE AND METABOLIC BIOLOGY, 1992, 48 (02) :91-121
[3]   ELECTROPHYSIOLOGICAL EFFECTS OF 4-HYDROXYNONENAL, AN ALDEHYDIC PRODUCT OF LIPID-PEROXIDATION, ON ISOLATED RAT VENTRICULAR MYOCYTES [J].
BHATNAGAR, A .
CIRCULATION RESEARCH, 1995, 76 (02) :293-304
[4]   Oxidative stress-mediated cardiac cell death is a major determinant of ventricular dysfunction and failure in dog dilated cardiomyopathy [J].
Cesselli, D ;
Jakoniuk, I ;
Barlucchi, L ;
Beltrami, AP ;
Hintze, TH ;
Nadal-Ginard, B ;
Kajstura, J ;
Leri, A ;
Anversa, P .
CIRCULATION RESEARCH, 2001, 89 (03) :279-286
[5]   Regulation of CCAAT/enhancer binding protein, interleukin-6, interleukin-6 receptor, and gp130 expression during myocardial ischemia/reperfusion [J].
Chandrasekar, B ;
Mitchell, DH ;
Colston, JT ;
Freeman, GL .
CIRCULATION, 1999, 99 (03) :427-433
[6]   Increased malondialdehyde in peripheral blood of patients with congestive heart failure [J].
DiazVelez, CR ;
GarciaCastineiras, S ;
MendozaRamos, E ;
HernandezLopez, E .
AMERICAN HEART JOURNAL, 1996, 131 (01) :146-152
[7]   CHEMISTRY AND BIOCHEMISTRY OF 4-HYDROXYNONENAL, MALONALDEHYDE AND RELATED ALDEHYDES [J].
ESTERBAUER, H ;
SCHAUR, RJ ;
ZOLLNER, H .
FREE RADICAL BIOLOGY AND MEDICINE, 1991, 11 (01) :81-128
[8]   CONTRIBUTION OF 4-HYDROXY-2,3-TRANS-NONENAL TO THE REDUCTION OF BETA-ADRENOCEPTOR FUNCTION IN THE HEART BY OXIDATIVE STRESS [J].
HAENEN, GRMM ;
PLUG, HJM ;
VERMEULEN, NPE ;
TIMMERMAN, H ;
BAST, A .
LIFE SCIENCES, 1989, 45 (01) :71-76
[9]   Direct evidence for increased hydroxyl radicals originating from superoxide in the failing myocardium [J].
Ide, T ;
Tsutsui, H ;
Kinugawa, S ;
Suematsu, N ;
Hayashidani, S ;
Ichikawa, K ;
Utsumi, H ;
Machida, Y ;
Egashira, K ;
Takeshita, A .
CIRCULATION RESEARCH, 2000, 86 (02) :152-157
[10]   Mitochondrial electron transport complex I is a potential source of oxygen free radicals in the failing myocardium [J].
Ide, T ;
Tsutsui, H ;
Kinugawa, S ;
Utsumi, H ;
Kang, DC ;
Hattori, N ;
Uchida, K ;
Arimura, K ;
Egashira, K ;
Takeshita, A .
CIRCULATION RESEARCH, 1999, 85 (04) :357-363