In-plane and out-of-plane thermal conductivity of silicon thin films predicted by molecular dynamics

被引:72
作者
Gomes, Carlos J. [1 ]
Madrid, Marcela
Goicochea, Javier V.
Amon, Cristina H.
机构
[1] Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA 15213 USA
[2] Carnegie Mellon Univ, Inst Complex Engn Syst, Pittsburgh, PA 15213 USA
[3] Carnegie Mellon Univ, Pittsburgh Supercomp Ctr, Pittsburgh, PA 15213 USA
来源
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME | 2006年 / 128卷 / 11期
关键词
equilibrium molecular dynamics; silicon thin films; in-plane; out-of-plane thermal conductivity; ballistic phonon transport;
D O I
10.1115/1.2352781
中图分类号
O414.1 [热力学];
学科分类号
摘要
The thermal conductivity of silicon thin films is predicted in the directions parallel and perpendicular to the film surfaces (in-plane and out-of-plane, respectively) using equilibrium molecular dynamics, the Green-Kubo relation, and the Stillinger-Weber interatomic potential. Three different boundary conditions are considered along the film surfaces: frozen atoms, surface potential, and free boundaries. Film thicknesses range from 2 to 217 nm and temperatures from 300 to 1000 K. The relation between the bulk phonon mean free path (Lambda) and the film thickness (d(s)) spans from the ballistic regime (Lambda >> ds) at 300 K to the diffusive, bulk-like regime (Lambda << d(s)) at 1000 K. When the film is thin enough, the in-plane and out-of-plane thermal conductivity differ from each other and decrease with decreasing film thickness, as a consequence of the scattering of phonons with the film boundaries. The in-plane thermal conductivity follows the trend observed experimentally at 300 K. In the ballistic limit, in accordance with the kinetic and phonon radiative transfer theories, the predicted out-of-plane thermal conductivity varies linearly with the film thickness, and is temperature-independent for temperatures near or above the Debyes temperature.
引用
收藏
页码:1114 / 1121
页数:8
相关论文
共 66 条
[1]   Interface and strain effects on the thermal conductivity of heterostructures: A molecular dynamics study [J].
Abramson, AR ;
Tien, CL ;
Majumdar, A .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2002, 124 (05) :963-970
[2]   Modeling of nanoscale transport phenomena: Application to information technology [J].
Amon, CH ;
Ghai, SS ;
Kim, WT ;
Jhon, MS .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 362 (01) :36-41
[3]   LOW-ENERGY ION-SCATTERING FROM THE SI(001) SURFACE [J].
AONO, M ;
HOU, Y ;
OSHIMA, C ;
ISHIZAWA, Y .
PHYSICAL REVIEW LETTERS, 1982, 49 (08) :567-570
[4]  
Ashcroft N., 1976, SOLID STATE PHYS, P461
[5]  
ASHEGHI M, 1998, ASME, V120, P30, DOI DOI 10.1115/1.2830059
[6]   PHASE-DIAGRAM OF SILICON BY MOLECULAR-DYNAMICS [J].
BROUGHTON, JQ ;
LI, XP .
PHYSICAL REVIEW B, 1987, 35 (17) :9120-9127
[7]   Nanoscale thermal transport [J].
Cahill, DG ;
Ford, WK ;
Goodson, KE ;
Mahan, GD ;
Majumdar, A ;
Maris, HJ ;
Merlin, R ;
Phillpot, SR .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (02) :793-818
[8]   Finite size effects in determination of thermal conductivities: Comparing molecular dynamics results with simple models [J].
Chantrenne, P ;
Barrat, JL .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2004, 126 (04) :577-585
[9]   Thermal conductivity of diamond and related materials from molecular dynamics simulations [J].
Che, JW ;
Çagin, T ;
Deng, WQ ;
Goddard, WA .
JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (16) :6888-6900
[10]   Thermal conductivity of carbon nanotubes [J].
Che, JW ;
Çagin, T ;
Goddard, WA .
NANOTECHNOLOGY, 2000, 11 (02) :65-69