Propagation analysis of self-convergent beam width and characterization of hard-edge diffracted beams

被引:32
作者
Amarande, S
Giesen, A
Hügel, H
机构
[1] Natl Inst Laser Plasma & Radiat Phys, Laser Dept, RO-76900 Bucharest, Romania
[2] Univ Stuttgart, Inst Strahlwerkzeuge, D-70569 Stuttgart, Germany
关键词
D O I
10.1364/AO.39.003914
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
For a laser beam diffracted by a hard-edge aperture, propagation of the beam width, defined by the second-order moment of its irradiance distribution truncated according to the self-convergent-width criterion, obeys the familiar hyperbolic law. It is demonstrated numerically that, with the self-convergent-width approach, the beam-propagation parameters for three beam types (Gaussian, Hermite Gaussian, and flattened Gaussian) diffracted by hard-edge apertures can be determined with the second-moment-based procedure that is recommended by the present draft standard only for unapertured laser beams. (C) 2000 Optical Society of America. OCIS codes: 120.4800, 140.3430, 350.5500.
引用
收藏
页码:3914 / 3924
页数:11
相关论文
共 29 条
[1]  
Amarande SA, 1996, OPT COMMUN, V129, P311
[2]  
[Anonymous], PHYS TECHNOLOGY LASE
[3]  
AUSTIN LW, 1995, P SPIE, V2375
[4]   BEAM PROPAGATION AND THE ABCD RAY MATRICES [J].
BELANGER, PA .
OPTICS LETTERS, 1991, 16 (04) :196-198
[5]  
BELANGER PA, 1993, LASER BEAM CHARACTER, P173
[6]   METHOD FOR MEASUREMENT OF REALISTIC 2ND-MOMENT PROPAGATION PARAMETERS FOR NONIDEAL LASER-BEAMS [J].
CHAMPAGNE, Y ;
BELANGER, PA .
OPTICAL AND QUANTUM ELECTRONICS, 1995, 27 (09) :813-824
[7]   COHERENCE AND INTENSITY MOMENTS OF LASER-LIGHT [J].
DU, KM ;
HERZIGER, G ;
LOOSEN, P ;
RUHL, F .
OPTICAL AND QUANTUM ELECTRONICS, 1992, 24 (09) :S1081-S1093
[8]  
Forbes M., 1990, Lasers & Optronics, V9, P51
[9]   Convergence criteria and optimization techniques for beam moments [J].
Gbur, G ;
Carney, PS .
PURE AND APPLIED OPTICS, 1998, 7 (05) :1221-1230
[10]   FLATTENED GAUSSIAN BEAMS [J].
GORI, F .
OPTICS COMMUNICATIONS, 1994, 107 (5-6) :335-341