Curvilinear component analysis: A self-organizing neural network for nonlinear mapping of data sets

被引:386
作者
Demartines, P
Herault, J
机构
[1] Institut National Polytechnique de Grenoble, Laboratoire de Traitement d'Images et de Reconnaissance des Formes
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 1997年 / 8卷 / 01期
关键词
dimension reduction self-organizing neural network; nonlinear mapping; interactive data exploration;
D O I
10.1109/72.554199
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a new strategy called ''curvilinear component analysis'' (CCA) for dimensionality reduction and representation of multidimensional datasets. The principle of CCA is a self-organized neural network performing two tasks: vector quantization (VQ) of the submanifold in the data set (input space) and nonlinear projection (P) of these quantizing vectors toward an output space, providing a revealing unfolding of the submanifold. After learning, the network has the ability to continuously map any new point from one space into another: forward mapping of new points in the input space, or backward mapping of an arbitrary position in the output space.
引用
收藏
页码:148 / 154
页数:7
相关论文
共 21 条
  • [1] COMPETITIVE LEARNING ALGORITHMS FOR VECTOR QUANTIZATION
    AHALT, SC
    KRISHNAMURTHY, AK
    CHEN, PK
    MELTON, DE
    [J]. NEURAL NETWORKS, 1990, 3 (03) : 277 - 290
  • [2] [Anonymous], 1978, INTERACTIVE PATTERN
  • [3] [Anonymous], THESIS I NATL POLYTE
  • [4] [Anonymous], 1952, Psychometrika
  • [5] [Anonymous], P INT S MULT AN
  • [6] [Anonymous], 1979, Multivariate analysis
  • [7] Demartines P., 1996, TR96036 INT COMP SCI
  • [8] DEMARTINES P, 1992, P C SAT C EUR MATH A
  • [9] DEMARTINES P, 1995, GRETSI 95 JUAN SEP
  • [10] DIDAY E, 1983, ELEMENTS ANAL DONNEE