The approximate solution of high-order linear Volterra-Fredholm integro-differential equations in terms of Taylor polynomials

被引:142
作者
Yalçinbas, S
Sezer, M [1 ]
机构
[1] Dokuz Eylul Univ, Fac Educ, Dept Math, Izmir, Turkey
[2] Celal Bayar Univ, Fac Sci, Dept Math, Manisa, Turkey
关键词
Taylor polynomials and series; Volterra and Fredholm integral equations; integrodifferential equations;
D O I
10.1016/S0096-3003(99)00059-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, a Taylor method is developed to find the approximate solution of high-order linear Volterra-Fredholm integro-differential equations under the mixed conditions in terms of Taylor polynomials about any point, In addition, examples that illustrate the pertinent features of the method are presented, and the results of study are discussed. (C) 2000 Elsevier Science Inc, All rights reserved.
引用
收藏
页码:291 / 308
页数:18
相关论文
共 8 条
[1]  
[Anonymous], 1996, INT J MATH EDUC SCI, DOI DOI 10.1080/0020739960270606
[2]   CHEBYSHEV SOLUTION OF DIFFERENTIAL, INTEGRAL AND INTEGRO-DIFFERENTIAL EQUATIONS [J].
ELGENDI, SE .
COMPUTER JOURNAL, 1969, 12 (03) :282-&
[3]  
KACAR A, 1996, SIBERNETIKA, V21, P1
[4]  
Kanwal R.P., 1989, Int. J. Math. Educ. Sci. Technol., V20, P411
[5]   CONTINUOUS-TIME COLLOCATION METHODS FOR VOLTERRA-FREDHOLM INTEGRAL-EQUATIONS [J].
KAUTHEN, JP .
NUMERISCHE MATHEMATIK, 1989, 56 (05) :409-424
[6]  
Krasnosel'skij M.A., 1989, Positive Linear Systems: The Method of Positive Operators
[7]  
Sezer M, 1994, International Journal of Mathematical Education in Science and Technology, V25, P625, DOI [10.1080/0020739940250501, DOI 10.1080/0020739940250501]
[8]  
Ward J, 1991, FINITE ELEMENT METHO