Limited bioavailability of organic pollutants in soil may be a detriment to the successful application of bioremediation. The availability of soil-sorbed biphenyl to two biphenyl-degrading bacteria, Pseudomonas putida P106 and Rhodococcus erythropolis NY05, was assessed using a kinetic mineralization assay. Biphenyl was aged in four soils of different organic carbon (OC) contents (0.4-7.8%) for up to 274 days. With a biphenyl-soil contact time of 24 h, the initial mineralization rates (IMRs) ranged from 2.6 to 3.5 mu g.L-1.min(-1) for strain P106 and from 3.8 to 0.92 mu g.L-1.min(-1) for strain NY05. These IMRs were higher than those of soil-free controls and those predicted by a coupled desorption/biodegradation model, suggesting both strains of bacteria could access soil-sorbed biphenyl. For strain P106, biphenyl mineralization curves in slurries of four different soils were nearly coincident with those in soil-free systems containing the same total mass of biphenyl. This strain appeared to have immediate and complete access to the pool of sorbed biphenyl. The extent of bioavailability of soil-sorbed biphenyl decreased with increased aging. The decrease in availability was most pronounced within the first 80 days. The effect of soil organic matter content on bioavailability showed different trends for the two organisms.