An algorithm for the learning of weights in discrimination functions using a priori constraints

被引:29
作者
Kruger, N
机构
[1] Institute Für Neuroinformatik, Ruhr-Universität Bochum, ND 03, 44801 Bochum
关键词
discrimination functions; a priori knowledge; weighting; face recognition; elastic graph matching;
D O I
10.1109/34.598233
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce a learning algorithm for the weights in a very common class of discrimination functions usually called ''weighted average.'' The learning algorithm can reduce the number of free variables by simple but effective a priori criteria about significant features. Here we apply our algorithm to three tasks of different dimensionality all concerned with face recognition.
引用
收藏
页码:764 / 768
页数:5
相关论文
共 15 条
[1]  
Berger JO., 1985, STATISTICAL DECISION
[2]   UNCERTAINTY RELATION FOR RESOLUTION IN SPACE, SPATIAL-FREQUENCY, AND ORIENTATION OPTIMIZED BY TWO-DIMENSIONAL VISUAL CORTICAL FILTERS [J].
DAUGMAN, JG .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1985, 2 (07) :1160-1169
[3]  
de Boor C., 1978, PRACTICAL GUIDE SPLI, DOI DOI 10.1007/978-1-4612-6333-3
[4]  
FERGUSON TS, 1967, MATH STATISTICS DECI
[5]  
FUKUNAGA K, 1990, INTRO STATISTICAL PA
[6]  
Gray R. M., 1984, IEEE ASSP Magazine, V1, P4, DOI 10.1109/MASSP.1984.1162229
[7]  
KOHONEN T, 1989, SPRINGER SERIES INFO, V8
[8]  
KRUGER N, P EUR S ART NEUR NET, P61
[9]  
KRUGER N, IRINI0895
[10]  
KRUGER N, 1996, P BMVC