Cosmological constraints from the SDSS luminous red galaxies

被引:1176
作者
Tegmark, Max [1 ]
Eisenstein, Daniel J.
Strauss, Michael A.
Weinberg, David H.
Blanton, Michael R.
Frieman, Joshua A.
Fukugita, Masataka
Gunn, James E.
Hamilton, Andrew J. S.
Knapp, Gillian R.
Nichol, Robert C.
Ostriker, Jeremiah P.
Padmanabhan, Nikhil
Percival, Will J.
Schlegel, David J.
Schneider, Donald P.
Scoccimarro, Roman
Seljak, Uros
Seo, Hee-Jong
Swanson, Molly
Szalay, Alexander S.
Vogeley, Michael S.
Yoo, Jaiyul
Zehavi, Idit
Abazajian, Kevork
Anderson, Scott F.
Annis, James
Bahcall, Neta A.
Bassett, Bruce
Berlind, Andreas
Brinkmann, Jon
Budavari, Tamas
Castander, Francisco
Connolly, Andrew
Csabai, Istvan
Doi, Mamoru
Finkbeiner, Douglas P.
Gillespie, Bruce
Glazebrook, Karl
Hennessy, Gregory S.
Hogg, David W.
Ivezic, Zeljko
Jain, Bhuvnesh
Johnston, David
Kent, Stephen
Lamb, Donald Q.
Lee, Brian C.
Lin, Huan
Loveday, Jon
Lupton, Robert H.
机构
[1] MIT, Dept Phys, Cambridge, MA 02139 USA
[2] Univ Arizona, Dept Astron, Tucson, AZ 85721 USA
[3] Princeton Univ Observ, Princeton, NJ 08544 USA
[4] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA
[5] NYU, Dept Phys, Ctr Cosmol & Particle Phys, New York, NY 10003 USA
[6] Univ Chicago, Ctr Cosmol Phys, Chicago, IL 60637 USA
[7] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA
[8] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA
[9] Univ Tokyo, Inst Cosm Ray Res, Kashiwa, Chiba 2778582, Japan
[10] Univ Colorado, Joint Inst Lab Astrophys, Boulder, CO 80309 USA
[11] Univ Colorado, Dept Astrophys & Planetry Sci, Boulder, CO 80309 USA
[12] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth P01 2EG, Hants, England
[13] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[14] Lawrence Berkeley Lab, Berkeley, CA 94720 USA
[15] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA
[16] Abdus Salaam Int Ctr Theoret Phys, I-34014 Trieste, Italy
[17] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA
[18] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA
[19] Case Western Reserve Univ, Dept Astron, Cleveland, OH 44106 USA
[20] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[21] Univ Washington, Dept Astron, Seattle, WA 98195 USA
[22] S African Astron Observ, ZA-7935 Cape Town, South Africa
[23] Univ Cape Town, Dept Appl Math, ZA-7925 Cape Town, South Africa
[24] Apache Point Observ, Sunspot, NM 88349 USA
[25] CSIC, Inst Estudis Espacials Catalunya, ES-08034 Barcelona, Spain
[26] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA
[27] Univ Tokyo, Inst Astron, Tokyo 1810015, Japan
[28] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA
[29] US Geol Survey, Flagstaff Stn, Flagstaff, AZ 86001 USA
[30] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA
[31] Jet Prop Lab, Pasadena, CA 91109 USA
[32] CALTECH, Pasadena, CA 91125 USA
[33] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA
[34] Gatan Inc, Pleasanton, CA 94588 USA
[35] Univ Sussex, Sussex Astron Ctr, Brighton BN1 9QJ, E Sussex, England
[36] Seoul Natl Univ, Dept Astron, Seoul 151742, South Korea
[37] Rochester Inst Technol, Dept Phys, Rochester, NY 14623 USA
[38] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA
来源
PHYSICAL REVIEW D | 2006年 / 74卷 / 12期
基金
英国科学技术设施理事会;
关键词
D O I
10.1103/PhysRevD.74.123507
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We measure the large-scale real-space power spectrum P(k) using luminous red galaxies (LRGs) in the Sloan Digital Sky Survey (SDSS) and use this measurement to sharpen constraints on cosmological parameters from the Wilkinson Microwave Anisotropy Probe (WMAP). We employ a matrix-based power spectrum estimation method using Pseudo-Karhunen-Loeve eigenmodes, producing uncorrelated minimum-variance measurements in 20 k-bands of both the clustering power and its anisotropy due to redshift-space distortions, with narrow and well-behaved window functions in the range 0.01h/Mpc < k < 0.2h/Mpc. Results from the LRG and main galaxy samples are consistent, with the former providing higher signal-to-noise. Our results are robust to omitting angular and radial density fluctuations and are consistent between different parts of the sky. They provide a striking confirmation of the predicted large-scale Lambda CDM power spectrum. Combining only SDSS LRG and WMAP data places robust constraints on many cosmological parameters that complement prior analyses of multiple data sets. The LRGs provide independent cross-checks on Omega(m) and the baryon fraction in good agreement with WMAP. Within the context of flat Lambda CDM models, our LRG measurements complement WMAP by sharpening the constraints on the matter density, the neutrino density and the tensor amplitude by about a factor of 2, giving Omega(m)=0.24 +/- 0.02 (1 sigma), (95%) and r < 0.3 (95%). Baryon oscillations are clearly detected and provide a robust measurement of the comoving distance to the median survey redshift z=0.35 independent of curvature and dark energy properties. Within the Lambda CDM framework, our power spectrum measurement improves the evidence for spatial flatness, sharpening the curvature constraint Omega(tot)=1.05 +/- 0.05 from WMAP alone to Omega(tot)=1.003 +/- 0.010. Assuming Omega(tot)=1, the equation of state parameter is constrained to w=-0.94 +/- 0.09, indicating the potential for more ambitious future LRG measurements to provide precision tests of the nature of dark energy. All these constraints are essentially independent of scales k > 0.1h/Mpc and associated nonlinear complications, yet agree well with more aggressive published analyses where nonlinear modeling is crucial.
引用
收藏
页数:34
相关论文
共 184 条
[1]   The Fourth Data Release of the Sloan Digital Sky Survey [J].
Adelman-McCarthy, JK ;
Agüeros, MA ;
Allam, SS ;
Anderson, KSJ ;
Anderson, SF ;
Annis, J ;
Bahcall, NA ;
Baldry, IK ;
Barentine, JC ;
Berlind, A ;
Bernardi, M ;
Blanton, MR ;
Boroski, WN ;
Brewington, HJ ;
Brinchmann, J ;
Brinkmann, J ;
Brunner, RJ ;
Budavári, T ;
Carey, LN ;
Carr, MA ;
Castander, FJ ;
Connolly, AJ ;
Csabai, I ;
Czarapata, PC ;
Dalcanton, JJ ;
Doi, M ;
Dong, F ;
Eisenstein, DJ ;
Evans, ML ;
Fan, XH ;
Finkbeiner, DP ;
Friedman, SD ;
Frieman, JA ;
Fukugita, M ;
Gillespie, B ;
Glazebrook, K ;
Gray, J ;
Grebel, EK ;
Gunn, JE ;
Gurbani, VK ;
de Haas, E ;
Hall, PB ;
Harris, FH ;
Harvanek, M ;
Hawley, SL ;
Hayes, J ;
Hendry, JS ;
Hennessy, GS ;
Hindsley, RB ;
Hirata, CM .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2006, 162 (01) :38-48
[2]  
ADELMANMCCARTHY J, IN PRESS
[3]   COSMOLOGY FOR GRAND UNIFIED THEORIES WITH RADIATIVELY INDUCED SYMMETRY-BREAKING [J].
ALBRECHT, A ;
STEINHARDT, PJ .
PHYSICAL REVIEW LETTERS, 1982, 48 (17) :1220-1223
[4]  
[Anonymous], 1947, Uber Lineare Methoden der Wahrscheinlichkeitsrechnung
[5]   Measurement of atmospheric neutrino oscillation parameters by Super-Kamiokande I [J].
Ashie, Y ;
Hosaka, J ;
Ishihara, K ;
Itow, Y ;
Kameda, J ;
Koshio, Y ;
Minamino, A ;
Mitsuda, C ;
Miura, M ;
Moriyama, S ;
Nakahata, M ;
Namba, T ;
Nambu, R ;
Obayashi, Y ;
Shiozawa, M ;
Suzuki, Y ;
Takeuchi, Y ;
Taki, K ;
Yamada, S ;
Ishitsuka, M ;
Kajita, T ;
Kaneyuki, K ;
Nakayama, S ;
Okada, A ;
Okumura, K ;
Saji, C ;
Takenaga, Y ;
Clark, ST ;
Desai, S ;
Kearns, E ;
Likhoded, S ;
Stone, JL ;
Sulak, LR ;
Wang, W ;
Goldhaber, M ;
Casper, D ;
Cravens, JP ;
Gajewski, W ;
Kropp, WR ;
Liu, DW ;
Mine, S ;
Smy, MB ;
Sobel, HW ;
Sterner, CW ;
Vagins, MR ;
Ganezer, KS ;
Hill, J ;
Keig, WE ;
Jang, JS ;
Kim, JY .
PHYSICAL REVIEW D, 2005, 71 (11)
[6]  
Barrow J.D., 1986, ANTHROPIC COSMOLOGIC
[7]   Dynamics of cosmological perturbations in position space [J].
Bashinsky, S ;
Bertschinger, E .
PHYSICAL REVIEW D, 2002, 65 (12)
[8]   Probing dark energy using baryonic oscillations in the galaxy power spectrum as a cosmological ruler [J].
Blake, C ;
Glazebrook, K .
ASTROPHYSICAL JOURNAL, 2003, 594 (02) :665-673
[9]  
BLAKE C, ASTROPH0605303
[10]   Time evolution of galaxy formation and bias in cosmological simulations [J].
Blanton, M ;
Cen, RY ;
Ostriker, JP ;
Strauss, MA ;
Tegmark, M .
ASTROPHYSICAL JOURNAL, 2000, 531 (01) :1-16