Small force control of nonlinear systems to given orbits

被引:20
作者
Abarbanel, HDI
Korzinov, L
Mees, AI
Rulkov, NF
机构
[1] UNIV CALIF SAN DIEGO,SCRIPPS INST OCEANOG,MARINE PHYS LAB,LA JOLLA,CA 92093
[2] UNIV CALIF SAN DIEGO,INST NONLINEAR STUDIES,LA JOLLA,CA 92093
[3] UNIV WESTERN AUSTRALIA,DEPT MATH,PERTH,WA 6907,AUSTRALIA
来源
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS | 1997年 / 44卷 / 10期
关键词
chaos; control; nonlinear; optimal;
D O I
10.1109/81.633894
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Using a low frequency nonlinear electrical circuit, se experimentally demonstrate an efficient nonlinear control method based on our theoretical developments. The method works in a state space for. the circuit which is reconstructed from observations of a single voltage. Assuming small control variations from the uncontrolled state, the method is fully nonlinear and ''one step'' optimal. It requires no knowledge of local state space linearizations of the dynamics near the target state. Starting from various initial states within the basin of attraction of the circuit attractor, we control to a period one and to a period two target orbit Each target orbit is an unstable periodic orbit of the uncontrolled system.
引用
收藏
页码:1018 / 1023
页数:6
相关论文
共 14 条
  • [1] Abarbanel H., 1996, Analysis of Observed Chaotic Data
  • [2] THE ANALYSIS OF OBSERVED CHAOTIC DATA IN PHYSICAL SYSTEMS
    ABARBANEL, HDI
    BROWN, R
    SIDOROWICH, JJ
    TSIMRING, LS
    [J]. REVIEWS OF MODERN PHYSICS, 1993, 65 (04) : 1331 - 1392
  • [3] ABARBANEL HDI, IN PRESS SYST CONTR
  • [4] [Anonymous], 2013, Nonlinear control systems
  • [5] [Anonymous], 1981, LECT NOTES MATH
  • [6] STABILIZING HIGH-PERIOD ORBITS IN A CHAOTIC SYSTEM - THE DIODE RESONATOR
    HUNT, ER
    [J]. PHYSICAL REVIEW LETTERS, 1991, 67 (15) : 1953 - 1955
  • [7] HIGHER-DIMENSIONAL TARGETING
    KOSTELICH, EJ
    GREBOGI, C
    OTT, E
    YORKE, JA
    [J]. PHYSICAL REVIEW E, 1993, 47 (01): : 305 - 310
  • [8] Murphy C. A., 1995, Proceedings of the the 3rd International Specialist Workshop on Nonlinear Dynamics of Electronic Systems. NDES '95, P225
  • [9] THE TAKENS EMBEDDING THEOREM
    Noakes, Lyle
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1991, 1 (04): : 867 - 872
  • [10] CONTROLLING CHAOS
    OTT, E
    GREBOGI, C
    YORKE, JA
    [J]. PHYSICAL REVIEW LETTERS, 1990, 64 (11) : 1196 - 1199