Functional group requirements in the probable active site of the VS ribozyme

被引:53
作者
Lafontaine, DA [1 ]
Wilson, TJ [1 ]
Zhao, ZY [1 ]
Lilley, DMJ [1 ]
机构
[1] Univ Dundee, Canc Res UK Nucle Acid Struct Res Grp, Dept Biochem, Dundee DD1 5EH, Scotland
关键词
RNA catalysis; functional group modification; acid-base catalysis; 2-aminopurine fluorescence;
D O I
10.1016/S0022-2836(02)00910-5
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The VS ribozyme catalyses the site-specific cleavage of a phosphodiester linkage by a transesterification reaction that entails the attack of the neighbouring 2'-oxygen with departure of the 5-oxygen. We have previously suggested that the A730 loop is an important component of the active site of the ribozyme, and that A756 is especially important in the cleavage reaction. Functional group modification experiments reported here indicate that the base of A756 is more important than its ribose for catalysis. A number of changes to the base, including complete ablation, lead to cleavage rates that are reduced 1000-fold, while removal of the 2'-hydroxyl group from the ribose results in tenfold slower cleavage. 2-Aminopurine fluorescence experiments indicate that this 2'-hydroxyl group is important for the structure of the A730 loop. Catalytic activity is especially sensitive to changes involving the exocyclic amine of A756; by contrast, the cleavage activity is only weakly sensitive to modification at the 7-position of the purine nucleus. These results suggest that the Watson-Crick edge of the adenine base is important in ribozyme function. We sought to test the possibility of a direct role of the nucleobase in the chemistry of the cleavage reaction. Addition of,imidazole base in the medium failed to restore the activity of a ribozyme from which the nucleobase of A756 was removed. However, no restoration was obtained with exogenous adenine base either, indicating that the cavity that might result from ablation of the base was closed. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:23 / 34
页数:12
相关论文
共 41 条
[1]   Rearrangement of a stable RNA secondary structure during VS ribozyme catalysis [J].
Andersen, AA ;
Collins, RA .
MOLECULAR CELL, 2000, 5 (03) :469-478
[2]   Ion-induced folding of the hammerhead ribozyme: a fluorescence resonance energy transfer study [J].
Bassi, GS ;
Murchie, AIH ;
Walter, F ;
Clegg, RM ;
Lilley, DMJ .
EMBO JOURNAL, 1997, 16 (24) :7481-7489
[3]   Identification of functional domains in the self-cleaving Neurospora VS ribozyme using damage selection [J].
Beattie, TL ;
Collins, RA .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 267 (04) :830-840
[4]   A SECONDARY-STRUCTURE MODEL FOR THE SELF-CLEAVING REGION OF NEUROSPORA VS RNA [J].
BEATTIE, TL ;
OLIVE, JE ;
COLLINS, RA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (10) :4686-4690
[5]   DEOXYNUCLEOSIDE PHOSPHORAMIDITES - A NEW CLASS OF KEY INTERMEDIATES FOR DEOXYPOLYNUCLEOTIDE SYNTHESIS [J].
BEAUCAGE, SL ;
CARUTHERS, MH .
TETRAHEDRON LETTERS, 1981, 22 (20) :1859-1862
[6]   INFLUENCE OF 5'-NEAREST NEIGHBORS ON THE INSERTION KINETICS OF THE FLUORESCENT NUCLEOTIDE ANALOG 2-AMINOPURINE BY KLENOW FRAGMENT [J].
BLOOM, LB ;
OTTO, MR ;
BEECHEM, JM ;
GOODMAN, MF .
BIOCHEMISTRY, 1993, 32 (41) :11247-11258
[7]   NONENZYMATIC CLEAVAGE AND LIGATION OF RNAS COMPLEMENTARY TO A PLANT-VIRUS SATELLITE RNA [J].
BUZAYAN, JM ;
GERLACH, WL ;
BRUENING, G .
NATURE, 1986, 323 (6086) :349-353
[8]   INVITRO SPLICING OF THE RIBOSOMAL-RNA PRECURSOR OF TETRAHYMENA - INVOLVEMENT OF A GUANOSINE NUCLEOTIDE IN THE EXCISION OF THE INTERVENING SEQUENCE [J].
CECH, TR ;
ZAUG, AJ ;
GRABOWSKI, PJ .
CELL, 1981, 27 (03) :487-496
[9]   SELF-CLEAVING TRANSCRIPTS OF SATELLITE DNA FROM THE NEWT [J].
EPSTEIN, LM ;
GALL, JG .
CELL, 1987, 48 (03) :535-543
[10]   Crystal structure of a hepatitis delta virus ribozyme [J].
Ferré-D'Amaré, AR ;
Zhou, KH ;
Doudna, JA .
NATURE, 1998, 395 (6702) :567-574