Polar growth in pollen tubes is associated with spatially confined dynamic changes in cell mechanical properties

被引:126
作者
Zerzour, Rabah [1 ]
Kroeger, Jens [2 ]
Geitmann, Anja [1 ]
机构
[1] Univ Montreal, Inst Rech Biol Vegetale, Dept Sci Biol, Montreal, PQ H1X 2B2, Canada
[2] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Cell growth; Cell mechanics; Micro-indentation; Plant cell wall; Pollen tube; Polar growth; Tip growth; Turgor; CYTOMECHANICAL PROPERTIES; NICOTIANA-TABACUM; PLANT; WALL; EXPANSION; PECTIN; MORPHOGENESIS; BIOMECHANICS; CYTOSKELETON; GERMINATION;
D O I
10.1016/j.ydbio.2009.07.044
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cellular morphogenesis involves changes to cellular size and shape which in the case of walled cells implies the mechanical deformation of the extracellular matrix. So far, technical challenges have made quantitative mechanical measurements of this process at subcellular scale impossible. We used micro-indentation to investigate the dynamic changes in the cellular mechanical properties during the onset of spatially confined growth activities in plant cells. Pollen tubes are cellular protuberances that have a strictly unidirectional growth pattern. Micro-indentation of these cells revealed that the initial formation of a cylindrical protuberance is preceded by a local reduction in cellular stiffness. Similar cellular softening was observed before the onset of a rapid growth phase in cells with oscillating growth pattern. These findings provide the first quantitative cytomechanical data that confirm the important role of the mechanical properties of the cell wall for local cellular growth processes. They are consistent with a conceptual model that explains pollen tube oscillatory growth based on the relationship between turgor pressure and tensile resistance in the apical cell wall. To further confirm the significance of cell mechanics, we artificially manipulated the mechanical cell wall properties as well as the turgor pressure. We observed that these changes affected the oscillation profile and were able to induce oscillatory behavior in steadily growing tubes. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:437 / 446
页数:10
相关论文
共 58 条
[1]   Root hair formation: F-actin-dependent tip growth is initiated by local assembly of profilin-supported F-actin meshworks accumulated within expansin-enriched bulges [J].
Baluska, F ;
Salaj, J ;
Mathur, J ;
Braun, M ;
Jasper, F ;
Samaj, J ;
Chua, NH ;
Barlow, PW ;
Volkmann, D .
DEVELOPMENTAL BIOLOGY, 2000, 227 (02) :618-632
[2]   Anisotropic expansion of the plant cell wall [J].
Baskin, TI .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 2005, 21 :203-222
[3]   The turgor pressure of growing lily pollen tubes [J].
Benkert, R ;
Obermeyer, G ;
Bentrup, FW .
PROTOPLASMA, 1997, 198 (1-2) :1-8
[4]  
Bibikova TN, 1998, DEVELOPMENT, V125, P2925
[5]   Finite-element analysis of geometrical factors in micro-indentation of pollen tubes [J].
Bolduc, J. -F. ;
Lewis, L. J. ;
Aubin, C-E. ;
Geitmann, A. .
BIOMECHANICS AND MODELING IN MECHANOBIOLOGY, 2006, 5 (04) :227-236
[6]   Pectin methylesterases and pectin dynamics in pollen tubes [J].
Bosch, M ;
Hepler, PK .
PLANT CELL, 2005, 17 (12) :3219-3226
[7]   Pectin methylesterase, a regulator of pollen tube growth [J].
Bosch, M ;
Cheung, AY ;
Hepler, PK .
PLANT PHYSIOLOGY, 2005, 138 (03) :1334-1346
[8]   Magnitude and direction of vesicle dynamics in growing pollen tubes using spatiotemporal image correlation spectroscopy and fluorescence recovery after photobleaching [J].
Bove, Jerome ;
Vaillancourt, Benoit ;
Kroeger, Jens ;
Hepler, Peter K. ;
Wiseman, Paul W. ;
Geitmann, Anja .
PLANT PHYSIOLOGY, 2008, 147 (04) :1646-1658
[9]   ESSENTIAL ROLE OF CALCIUM ION IN POLLEN GERMINATION AND POLLEN TUBE GROWTH [J].
BREWBAKE, JL ;
KWACK, BH .
AMERICAN JOURNAL OF BOTANY, 1963, 50 (09) :859-&
[10]  
Chebli Y., 2007, Functional Plant Science and Biotechnology, P232