Optical Enhancement via Electrode Designs for High-Performance Polymer Solar Cells

被引:56
作者
Chueh, Chu-Chen [1 ]
Crump, Michael [1 ]
Jen, Alex K. -Y. [1 ,2 ]
机构
[1] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA
[2] Univ Washington, Dept Chem, Seattle, WA 98195 USA
关键词
SHORT-CIRCUIT CURRENT; THIN-FILM; SURFACE-PLASMON; TRANSPARENT ELECTRODES; EFFICIENCY ENHANCEMENT; ABSORPTION ENHANCEMENT; SILVER NANOPARTICLES; LIGHT-SCATTERING; MICROCAVITY; AG;
D O I
10.1002/adfm.201503489
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
To capture the essence of the rapid progress in optical engineering exploited in high-performance polymer solar cells (PSCs), a comprehensive overview focusing on recent developments and achievements in PSC electrode engineering is provided in this review. To date, various kinds of electrode materials and geometries are exploited to enhance light-trapping in devices through distinct optical strategies. In addition to the widely used nanostructured electrodes that induce plasmonic-enhanced light absorption, planar ultra-thin metal films also have attracted significant attention due to their remarkably reflective transparent properties that beget efficient optical microcavities. These microcavities confine incident light with resonant frequencies between two reflective electrodes due to optically coherent interference, boosting the light absorption of thin-film PSCs while maintaining efficient charge dissociation and extraction. After reviewing the challenges in developing high-performance microcavity-enhanced PSCs (MCPSCs), we discuss strategies to improve MCPSC performance further to showcase the potential of harnessing microcavity resonance effects in thin-film PSCs.
引用
收藏
页码:321 / 340
页数:20
相关论文
共 135 条
[1]   Broadband optical absorption enhancement through coherent light trapping in thin-film photovoltaic cells [J].
Agrawal, Mukul ;
Peumans, Peter .
OPTICS EXPRESS, 2008, 16 (08) :5385-5396
[2]   Highly efficient organic tandem solar cells: a follow up review [J].
Ameri, Tayebeh ;
Li, Ning ;
Brabec, Christoph J. .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (08) :2390-2413
[3]   Highly Efficient Top-Illuminated Flexible Polymer Solar Cells with a Nanopatterned 3D Microresonant Cavity [J].
An, Cheng Jin ;
Cho, Changsoon ;
Choi, Jong Kil ;
Park, Jong-Min ;
Jin, Ming Liang ;
Lee, Jung-Yong ;
Jung, Hee-Tae .
SMALL, 2014, 10 (07) :1278-1283
[4]   Surface plasmon assisted high performance top-illuminated polymer solar cells with nanostructured Ag rear electrodes [J].
An, Cheng Jin ;
Yoo, Hae-Wook ;
Cho, Changsoon ;
Park, Jong-Min ;
Choi, Jong Kil ;
Jin, Ming Liang ;
Lee, Jung-Yong ;
Jung, Hee-Tae .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (09) :2915-2921
[5]   Smoothing of ultrathin silver films by transition metal seeding [J].
Anders, Andre ;
Byon, Eungsun ;
Kim, Dong-Ho ;
Fukuda, Kentaro ;
Lim, Sunnie H. N. .
SOLID STATE COMMUNICATIONS, 2006, 140 (05) :225-229
[6]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/NMAT2629, 10.1038/nmat2629]
[7]   Grating-Coupled Surface Plasmon Enhanced Short-Circuit Current in Organic Thin-Film Photovoltaic Cells [J].
Baba, Akira ;
Aoki, Nobutaka ;
Shinbo, Kazunari ;
Kato, Keizo ;
Kaneko, Futao .
ACS APPLIED MATERIALS & INTERFACES, 2011, 3 (06) :2080-2084
[8]   Au@Ag Core-Shell Nanocubes for Efficient Plasmonic Light Scattering Effect in Low Bandgap Organic Solar Cells [J].
Baek, Se-Woong ;
Park, Garam ;
Noh, Jonghyeon ;
Cho, Changsoon ;
Lee, Chun-Ho ;
Seo, Min-Kyo ;
Song, Hyunjoon ;
Lee, Jung-Yong .
ACS NANO, 2014, 8 (04) :3302-3312
[9]  
Betancur R, 2013, NAT PHOTONICS, V7, P995, DOI [10.1038/NPHOTON.2013.276, 10.1038/nphoton.2013.276]
[10]   A pentacyclic aromatic lactam building block for efficient polymer solar cells [J].
Cao, Jiamin ;
Liao, Qiaogan ;
Du, Xiaoyan ;
Chen, Jianhua ;
Xiao, Zuo ;
Zuo, Qiqun ;
Ding, Liming .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (11) :3224-3228