Overexpression of PgDREB2A transcription factor enhances abiotic stress tolerance and activates downstream stress-responsive genes

被引:149
作者
Agarwal, Parinita [1 ,2 ]
Agarwal, Pradeep K. [1 ]
Joshi, Arvind J. [2 ]
Sopory, Sudhir K. [1 ]
Reddy, Malireddy K. [1 ]
机构
[1] Int Ctr Genet Engn & Biotechnol, New Delhi 110067, India
[2] Bhavnagar Univ, Dept Life Sci, Bhavnagar 364002, Gujarat, India
关键词
Abiotic stress; Pennisetum glaucum; PgDREB2A; Transcription factor; Transgenics; MOLECULAR RESPONSES; FREEZING TOLERANCE; LOW-TEMPERATURE; HIGH-SALINITY; FUNCTIONAL-ANALYSIS; HIGH-SALT; DROUGHT; EXPRESSION; ARABIDOPSIS; COLD;
D O I
10.1007/s11033-009-9885-8
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The DREB transcription factors comprise conserved ERF/AP2 DNA-binding domain, bind specifically to DRE/CRT motif and regulate abiotic stress mediated gene expression. In this study we show that PgDREB2A from Pennisetum glaucum is a powerful transcription factor to engineer multiple stress tolerance in tobacco plants. The PgDREB2A protein lacks any potential PEST sequence, which is known to act as a signal peptide for protein degradation. Therefore, the transgenic tobacco plants were raised using full-length cDNA without modification. The transgenics exhibited enhanced tolerance to both hyperionic and hyperosmotic stresses. At lower concentration of NaCl and mannitol, seed germination and seedling growth was similar in WT and transgenic, however at higher concentration germination in WT decreased significantly. D15 and D46 lines showed 4-fold higher germination percent at 200 mM NaCl. At 400 mM mannitol seed germination in WT was completely arrested, whereas in transgenic line it was more than 50%. Seedlings of D15 and D46 lines showed better growth like leaf area, root number, root length and fresh weight compared to wild type for both the stresses. The quantitative Real time PCR of transgenic showed higher expression of downstream genes NtERD10B, HSP70-3, Hsp18p, PLC3, AP2 domain TF, THT1, LTP1 and heat shock (NtHSF2) and pathogen-regulated (NtERF5) factors with different stress treatments.
引用
收藏
页码:1125 / 1135
页数:11
相关论文
共 53 条
[1]   Stress-inducible DREB2A transcription factor from Pennisetum glaucum is a phosphoprotein and its phosphorylation negatively regulates its DNA-binding activity [J].
Agarwal, Parinita ;
Agarwal, Pradeep K. ;
Nair, Suresh ;
Sopory, S. K. ;
Reddy, M. K. .
MOLECULAR GENETICS AND GENOMICS, 2007, 277 (02) :189-198
[2]   Role of DREB transcription factors in abiotic and biotic stress tolerance in plants [J].
Agarwal, Pradeep K. ;
Agarwal, Parinita ;
Reddy, M. K. ;
Sopory, Sudhir K. .
PLANT CELL REPORTS, 2006, 25 (12) :1263-1274
[3]   Sorghum bicolor's transeriptome response to dehydration, high salinity and ABA [J].
Buchanan, CD ;
Lim, SY ;
Salzman, RA ;
Kagiampakis, L ;
Morishige, DT ;
Weers, BD ;
Klein, RR ;
Pratt, LH ;
Cordonnier-Pratt, MM ;
Klein, PE ;
Mullet, JE .
PLANT MOLECULAR BIOLOGY, 2005, 58 (05) :699-720
[4]   GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants [J].
Chen, Ming ;
Wang, Qiao-Yan ;
Cheng, Xian-Guo ;
Xu, Zhao-Shi ;
Li, an-Cheng Li ;
Ye, Xing-Guo ;
Xia, Lan-Qin ;
Ma, You-Zhi .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2007, 353 (02) :299-305
[5]   Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses [J].
Chen, WQ ;
Provart, NJ ;
Glazebrook, J ;
Katagiri, F ;
Chang, HS ;
Eulgem, T ;
Mauch, F ;
Luan, S ;
Zou, GZ ;
Whitham, SA ;
Budworth, PR ;
Tao, Y ;
Xie, ZY ;
Chen, X ;
Lam, S ;
Kreps, JA ;
Harper, JF ;
Si-Ammour, A ;
Mauch-Mani, B ;
Heinlein, M ;
Kobayashi, K ;
Hohn, T ;
Dangl, JL ;
Wang, X ;
Zhu, T .
PLANT CELL, 2002, 14 (03) :559-574
[6]   Networks of transcription factors with roles in environmental stress response [J].
Chen, WQJ ;
Zhu, T .
TRENDS IN PLANT SCIENCE, 2004, 9 (12) :591-596
[7]   Drought tolerance established by enhanced expression of the CC-NBS-LRR gene, ADR1, requires salicylic acid, EDS1 and ABI1 [J].
Chini, A ;
Grant, JJ ;
Seki, M ;
Shinozaki, K ;
Loake, GJ .
PLANT JOURNAL, 2004, 38 (05) :810-822
[8]  
CHOMCZYNSKI P, 1987, ANAL BIOCHEM, V162, P156, DOI 10.1016/0003-2697(87)90021-2
[9]   Dehydrins: A commonality in the response of plants to dehydration and low temperature [J].
Close, TJ .
PHYSIOLOGIA PLANTARUM, 1997, 100 (02) :291-296
[10]   Genomic approaches to plant stress tolerance [J].
Cushman, JC ;
Bohnert, HJ .
CURRENT OPINION IN PLANT BIOLOGY, 2000, 3 (02) :117-124