Curvature and temperature of complex networks

被引:84
作者
Krioukov, Dmitri [1 ]
Papadopoulos, Fragkiskos [1 ]
Vahdat, Amin [2 ]
Boguna, Marian [3 ]
机构
[1] Univ Calif San Diego, Cooperat Assoc Internet Data Anal, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Comp Sci & Engn, La Jolla, CA 92093 USA
[3] Univ Barcelona, Dept Fis Fonamental, E-08028 Barcelona, Spain
来源
PHYSICAL REVIEW E | 2009年 / 80卷 / 03期
关键词
complex networks; fermion systems; Internet; telecommunication network routing; topology;
D O I
10.1103/PhysRevE.80.035101
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We show that heterogeneous degree distributions in observed scale-free topologies of complex networks can emerge as a consequence of the exponential expansion of hidden hyperbolic space. Fermi-Dirac statistics provides a physical interpretation of hyperbolic distances as energies of links. The hidden space curvature affects the heterogeneity of the degree distribution, while clustering is a function of temperature. We embed the internet into the hyperbolic plane and find a remarkable congruency between the embedding and our hyperbolic model. Besides proving our model realistic, this embedding may be used for routing with only local information, which holds significant promise for improving the performance of internet routing.
引用
收藏
页数:4
相关论文
共 14 条
[1]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[2]   Navigability of complex networks [J].
Boguna, Marian ;
Krioukov, Dmitri ;
Claffy, K. C. .
NATURE PHYSICS, 2009, 5 (01) :74-80
[3]  
CLAUSET A, SIAM REV IN PRESS
[4]   Hierarchical structure and the prediction of missing links in networks [J].
Clauset, Aaron ;
Moore, Cristopher ;
Newman, M. E. J. .
NATURE, 2008, 453 (7191) :98-101
[5]   Principles of statistical mechanics of uncorrelated random networks [J].
Dorogovtsev, SN ;
Mendes, JFF ;
Samukhin, A .
NUCLEAR PHYSICS B, 2003, 666 (03) :396-416
[6]  
Gromov M., 2007, METRIC STRUCTURES RI
[7]   The Internet AS-level topology: Three data sources and one definitive metric [J].
Mahadevan, P ;
Krioukov, D ;
Fomenkov, M ;
Huffaker, B ;
Dimitropoulos, X ;
Claffy, K ;
Vahdat, A .
ACM SIGCOMM COMPUTER COMMUNICATION REVIEW, 2006, 36 (01) :17-26
[8]  
MEYER D, 2007, RFC4984 INT ARCH BOA
[9]  
Newman M.E.J., 1999, Monte Carlo Methods in Statistical Physics
[10]  
Park J, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.066117