Localization and molecular determinants of the hanatoxin receptors on the voltage-sensing domains of a K+ channel

被引:117
作者
Li-Smerin, Y [1 ]
Swartz, KJ [1 ]
机构
[1] NINDS, Mol Physiol & Biophys Unit, NIH, Bethesda, MD 20892 USA
关键词
gating modifier toxin; scanning mutagenesis; voltage-dependent gating; protein-protein interaction;
D O I
10.1085/jgp.115.6.673
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Hanatoxin inhibits voltage-gated K+ channels by modifying the energetics of activation. We studied the molecular determinants and physical location of the Hanatoxin receptors on the drk1 voltage-gated K+ channel. First, we made multiple substitutions at three previously identified positions in the COOH terminus of S3 to examine whether these residues interact intimately with the toxin. We also examined a region encompassing S1-S3 using alanine-scanning mutagenesis to identify additional determinants of the toxin receptors. Finally, guided by the structure of the KcsA K+ channel, we explored whether the toxin interacts with the peripheral extracellular surface of the pore domain in the drk1 K+ channel. Our results argue for an intimate interaction between the toxin and the COOH terminus of S3 and suggest that the Hanatoxin receptors are confined within the voltage-sensing domains of the channel, at least 20-25 Angstrom away from the central pore axis.
引用
收藏
页码:673 / 684
页数:12
相关论文
共 62 条
[1]   Contribution of the S4 segment to gating charge in the Shaker K+ channel [J].
Aggarwal, SK ;
MacKinnon, R .
NEURON, 1996, 16 (06) :1169-1177
[2]   Anatomy of hot spots in protein interfaces [J].
Bogan, AA ;
Thorn, KS .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 280 (01) :1-9
[3]   Characterizing voltage-dependent conformational changes in the Shaker K+ channel with fluorescence [J].
Cha, A ;
Bezanilla, F .
NEURON, 1997, 19 (05) :1127-1140
[4]   Inhibition of T-type voltage-gated calcium channels by a new scorpion toxin [J].
Chuang, RSI ;
Jaffe, H ;
Cribbs, L ;
Perez-Reyes, E ;
Swartz, KJ .
NATURE NEUROSCIENCE, 1998, 1 (08) :668-674
[5]   A HOT-SPOT OF BINDING-ENERGY IN A HORMONE-RECEPTOR INTERFACE [J].
CLACKSON, T ;
WELLS, JA .
SCIENCE, 1995, 267 (5196) :383-386
[6]   Structural and functional analysis of the 1:1 growth hormone:receptor complex reveals the molecular basis for receptor affinity [J].
Clackson, T ;
Ultsch, MH ;
Wells, JA ;
de Vos, AM .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 277 (05) :1111-1128
[7]   The structure of the potassium channel:: Molecular basis of K+ conduction and selectivity [J].
Doyle, DA ;
Cabral, JM ;
Pfuetzner, RA ;
Kuo, AL ;
Gulbis, JM ;
Cohen, SL ;
Chait, BT ;
MacKinnon, R .
SCIENCE, 1998, 280 (5360) :69-77
[8]   Crystal structures of a complexed and peptide-free membrane protein-binding domain: Molecular basis of peptide recognition by PDZ [J].
Doyle, DA ;
Lee, A ;
Lewis, J ;
Kim, E ;
Sheng, M ;
MacKinnon, R .
CELL, 1996, 85 (07) :1067-1076
[9]   A NOVEL POTASSIUM CHANNEL WITH DELAYED RECTIFIER PROPERTIES ISOLATED FROM RAT-BRAIN BY EXPRESSION CLONING [J].
FRECH, GC ;
VANDONGEN, AMJ ;
SCHUSTER, G ;
BROWN, AM ;
JOHO, RH .
NATURE, 1989, 340 (6235) :642-645
[10]   PURIFICATION AND CHARACTERIZATION OF 3 INHIBITORS OF VOLTAGE-DEPENDENT K+ CHANNELS FROM LEIURUS-QUINQUESTRIATUS VAR HEBRAEUS VENOM [J].
GARCIA, ML ;
GARCIACALVO, M ;
HIDALGO, P ;
LEE, A ;
MACKINNON, R .
BIOCHEMISTRY, 1994, 33 (22) :6834-6839