On approximate geometric k-clustering

被引:118
作者
Matousek, J [1 ]
机构
[1] Charles Univ Prague, Dept Appl Math, CR-11800 Prague, Czech Republic
关键词
Cost Function; Minimum Cost; Deterministic Algorithm; Polynomial Dependence;
D O I
10.1007/s004540010019
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
For a partition of an n-point set X subset of R-d into k subsets (clusters) S-1, S-2, ..., S-k, we consider the cost function Sigma(i=1)(k) Sigma(x is an element of Si) parallel to x - c(S-i)parallel to(2), where c(S-i) denotes the center of gravity of S-i. For k = 2 and for any fixed d and epsilon > 0, we present a deterministic algorithm that finds a 2-clustering with cost no worse than (1 + epsilon)-times the minimum cost in time O(n log n); the constant of proportionality depends polynomially on epsilon. For an arbitrary fixed k, we get an O(n log(k) n) algorithm for a fixed epsilon, again with a polynomial dependence on epsilon.
引用
收藏
页码:61 / 84
页数:24
相关论文
共 12 条
  • [1] Arora S., 1998, Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, P106, DOI 10.1145/276698.276718
  • [2] Polynomial time approximation schemes for euclidean TSP and other geometric problems
    Arora, S
    [J]. 37TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 1996, : 2 - 11
  • [3] Arya S., 1995, Proceedings of the Twenty-Seventh Annual ACM Symposium on the Theory of Computing, P489, DOI 10.1145/225058.225191
  • [4] Arya S., 1995, Proceedings of the Eleventh Annual Symposium on Computational Geometry, P172, DOI 10.1145/220279.220298
  • [5] A DECOMPOSITION OF MULTIDIMENSIONAL POINT SETS WITH APPLICATIONS TO K-NEAREST-NEIGHBORS AND N-BODY POTENTIAL FIELDS
    CALLAHAN, PB
    KOSARAJU, SR
    [J]. JOURNAL OF THE ASSOCIATION FOR COMPUTING MACHINERY, 1995, 42 (01): : 67 - 90
  • [6] GEOMETRIC CLUSTERINGS
    CAPOYLEAS, V
    ROTE, G
    WOEGINGER, G
    [J]. JOURNAL OF ALGORITHMS, 1991, 12 (02) : 341 - 356
  • [7] Hasegawa S., 1993, P 1 PAC C COMP GRAPH, V1, P75
  • [8] Inaba M., 1994, Proceedings of the Tenth Annual Symposium on Computational Geometry, P332, DOI 10.1145/177424.178042
  • [9] Indyk P., 1998, Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, P604, DOI 10.1145/276698.276876
  • [10] INDYK P, 1999, P 40 IEEE S FDN COMP