Achievements and perspectives to overcome the poor solvent resistance in acetone and butanol-producing microorganisms

被引:229
作者
Ezeji, Thaddeus [2 ,3 ]
Milne, Caroline [4 ]
Price, Nathan D. [4 ]
Blaschek, Hans P. [1 ]
机构
[1] Univ Illinois, Ctr Adv BioEnergy Res, Urbana, IL 61801 USA
[2] Ohio State Univ, Ohio State Agr Res & Dev Ctr, Wooster, OH 44691 USA
[3] Ohio State Univ, Dept Anim Sci, Wooster, OH 44691 USA
[4] Univ Illinois, Dept Chem & Biomol Engn, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
Clostridium; Solvents; Tolerance; Butanol toxicity; Acetone; CLOSTRIDIUM-BEIJERINCKII BA101; HYPERPRODUCING MUTANT BA101; ACETOBUTYLICUM ATCC 824; ESCHERICHIA-COLI; LIPID-COMPOSITION; ETHANOL TOLERANCE; SACCHAROMYCES-CEREVISIAE; TRANSCRIPTIONAL ANALYSIS; AGRICULTURAL RESIDUES; RECOMBINANT STRAINS;
D O I
10.1007/s00253-009-2390-0
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Anaerobic bacteria such as the solventogenic clostridia can ferment a wide range of carbon sources (e.g., glucose, galactose, cellobiose, mannose, xylose, and arabinose) to produce carboxylic acids (acetic and butyric) and solvents such as acetone, butanol, and ethanol (ABE). The fermentation process typically proceeds in two phases (acidogenic and solventogenic) in a batch mode. Poor solvent resistance by the solventogenic clostridia and other fermenting microorganisms is a major limiting factor in the profitability of ABE production by fermentation. The toxic effect of solvents, especially butanol, limits the concentration of these solvents in the fermentation broth, limiting solvent yields and adding to the cost of solvent recovery from dilute solutions. The accepted dogma is that toxicity in the ABE fermentation is due to chaotropic effects of butanol on the cell membranes of the fermenting microorganisms, which poses a challenge for the biotechnological whole-cell bio-production of butanol. This mini-review is focused on (1) the effects of solvents on inhibition of cell metabolism (nutrient transport, ion transport, and energy metabolism); (2) cell membrane fluidity, death, and solvent tolerance associated with the ability of cells to tolerate high concentrations of solvents without significant loss of cell function; and (3) strategies for overcoming poor solvent resistance in acetone and butanol-producing microorganisms.
引用
收藏
页码:1697 / 1712
页数:16
相关论文
共 110 条
[1]   Relationship between ethanol tolerance, H+-ATPase activity and the lipid composition of the plasma membrane in different wine yeast strains [J].
Aguilera, F. ;
Peinado, R. A. ;
Millan, C. ;
Ortega, J. M. ;
Mauricio, J. C. .
INTERNATIONAL JOURNAL OF FOOD MICROBIOLOGY, 2006, 110 (01) :34-42
[2]   Transcriptional analysis of spo0A overexpression in Clostridium acetobutylicum and its effect on the cell's response to butanol stress [J].
Alsaker, KV ;
Spitzer, TR ;
Papoutsakis, ET .
JOURNAL OF BACTERIOLOGY, 2004, 186 (07) :1959-1971
[3]   ISOLATION AND CHARACTERIZATION OF CLOSTRIDIUM-ACETOBUTYLICUM MUTANTS WITH ENHANCED AMYLOLYTIC ACTIVITY [J].
ANNOUS, BA ;
BLASCHEK, HP .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1991, 57 (09) :2544-2548
[4]   A novel eIF2B-dependent mechanism of translational control in yeast as a response to fusel alcohols [J].
Ashe, MP ;
Slaven, JW ;
De Long, SK ;
Ibrahimo, S ;
Sachs, AB .
EMBO JOURNAL, 2001, 20 (22) :6464-6474
[5]   Metabolic engineering for advanced biofuels production from Escherichia coli [J].
Atsumi, Shota ;
Liao, James C. .
CURRENT OPINION IN BIOTECHNOLOGY, 2008, 19 (05) :414-419
[6]   Metabolic engineering of Escherichia coli for 1-butanol production [J].
Atsumi, Shota ;
Cann, Anthony F. ;
Connor, Michael R. ;
Shen, Claire R. ;
Smith, Kevin M. ;
Brynildsen, Mark P. ;
Chou, Katherine J. Y. ;
Hanai, Taizo ;
Liao, James C. .
METABOLIC ENGINEERING, 2008, 10 (06) :305-311
[7]   Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels [J].
Atsumi, Shota ;
Hanai, Taizo ;
Liao, James C. .
NATURE, 2008, 451 (7174) :86-U13
[8]   Directed Evolution of Methanococcus jannaschii Citramalate Synthase for Biosynthesis of 1-Propanol and 1-Butanol by Escherichia coli [J].
Atsumi, Shota ;
Liao, James C. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2008, 74 (24) :7802-7808
[9]   EFFECT OF BUTANOL CHALLENGE AND TEMPERATURE ON LIPID-COMPOSITION AND MEMBRANE FLUIDITY OF BUTANOL-TOLERANT CLOSTRIDIUM-ACETOBUTYLICUM [J].
BAER, SH ;
BLASCHEK, HP ;
SMITH, TL .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1987, 53 (12) :2854-2861
[10]   BACTERIOCIN PRODUCTION BY CLOSTRIDIUM-ACETOBUTYLICUM IN AN INDUSTRIAL FERMENTATION PROCESS [J].
BARBER, JM ;
ROBB, FT ;
WEBSTER, JR ;
WOODS, DR .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1979, 37 (03) :433-437