Chat (Cas/HEF1-associated signal transducer) is a novel signaling molecule with an N-terminal SH2 domain and C-terminal Cas/HEF1 association domain that is implicated in the regulation of cell adhesion. The Cas/HEF1 association domain also shows sequence similarity with guanine nucleotide exchange factors for Ras family small GTPases. In this study, we found significant activation of Rap1 in Chat-overexpressing cells. Myr-Chat, a membrane-targeted form of Chat, activated Rap1 more efficiently. Interestingly, Chat and Cas synergistically activated Rap1. Certain Cas, Crk or C3G mutants suppressed Rap I activation by Chat. We also confirmed the ternary complex formation consisting of Chat, Cas and Crk. Thus, it is likely that Chat-induced Rap1 activation was mediated by upregulation of the Cas-Crk-C3G signaling pathway rather than direct guanine nucleotide exchange factor activity of Chat. We further demonstrated that Myr-Chat expression induced cell periphery spreading and cell shape branching and that this activity also depended on the Cas-Crk-C3G pathway and Rap1 activity. Moreover, expression of Myr-Chat enhanced integrin-mediated cell adhesion. Taken together we propose a novel role for the Chat-Cas complex in controlling cell adhesion via the activation of Rap1.