Fault finiteness and initiation of dynamic shear instability

被引:58
作者
Dascalu, C [1 ]
Ionescu, IR
Campillo, M
机构
[1] Univ Savoie, Math Lab, F-73376 Le Bourget du Lac, France
[2] Romanian Acad, Inst Appl Math, Bucharest 70700, Romania
[3] Univ Grenoble 1, Lab Geophys Interne, F-38041 Grenoble, France
关键词
faults; slip rates; eigenvalues; shear; rupture;
D O I
10.1016/S0012-821X(00)00055-8
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We study the initiation of slip instabilities of a finite fault in a homogeneous linear elastic space. We consider the antiplane unstable shearing under a slip-dependent friction law with a constant weakening rate. We attack the problem by spectral analysis. We concentrate our attention on the case of long initiation, i.e. small positive eigenvalues. A static analysis of stability is presented for the nondimensional problem. Using an integral equation method we determine the first (nondimensional) eigenvalue which depends only on the geometry of the problem, In connection with the weakening rate and the fault length this (universal) constant determines the range of instability for the dynamic problem. We give the exact limiting value of the length of an unstable fault for a given friction law, By means of a spectral expansion we define the 'dominant part' of the unstable dynamic solution, characterized by an exponential time growth. For the long-term evolution of the initiation phase we reduce the dynamic eigenvalue problem to a hypersingular integral equation to compute the unstable eigenfunctions. We use the expression of the dominant part to deduce an approximate formula for the duration of the initiation phase. Finally, some numerical tests are performed. We give the numerical values for the first eigenfunction. The dependence of the first eigenvalue and the duration of the initiation on the weakening rate are pointed out. The results are compared with those for the full solution computed with a finite-differences scheme. These results suggest that a very simple friction law could imply a broad range of duration of initiation, They show the fundamental role played by the limited extent of the potentially slipping patch in the triggering of an unstable rupture event. (C) 2000 Published by Elsevier Science B.V, All rights reserved.
引用
收藏
页码:163 / 176
页数:14
相关论文
共 14 条
[1]   RUPTURE PROPAGATION WITH FINITE STRESS IN ANTIPLANE STRAIN [J].
ANDREWS, DJ .
JOURNAL OF GEOPHYSICAL RESEARCH, 1976, 81 (20) :3575-3582
[2]   Initiation of antiplane shear instability under slip dependent friction [J].
Campillo, M ;
Ionescu, IR .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 1997, 102 (B9) :20363-20371
[4]  
DRAGOS L, 1983, ARCH MECH, V35, P575
[5]   SEISMIC EVIDENCE FOR AN EARTHQUAKE NUCLEATION PHASE [J].
ELLSWORTH, WL ;
BEROZA, GC .
SCIENCE, 1995, 268 (5212) :851-855
[6]  
ERDELYI A, 1954, UNPUB TABLES INTEGRA
[7]  
Fox C., 1957, CAN J MATH, V9, P110
[8]   Introduction to special section: Stress triggers, stress shadows, and implications for seismic hazard [J].
Harris, RA .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 1998, 103 (B10) :24347-24358
[9]   SLOW INITIAL PHASE OF THE P-WAVE VELOCITY PULSE GENERATED BY MICROEARTHQUAKES [J].
IIO, Y .
GEOPHYSICAL RESEARCH LETTERS, 1992, 19 (05) :477-480
[10]   Influence of the shape of the friction law and fault finiteness on the duration of initiation [J].
Ionescu, IR ;
Campillo, M .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 1999, 104 (B2) :3013-3024