The Legionella pneumophila effector SidJ is required for efficient recruitment of endoplasmic reticulum proteins to the bacterial phagosome

被引:116
作者
Liu, Yancheng [1 ]
Luo, Zhao-Qing [1 ]
机构
[1] Purdue Univ, Dept Biol Sci, W Lafayette, IN 47907 USA
关键词
D O I
10.1128/IAI.01278-06
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
The virulence of Legionella pneumophila is dependent on the Dot/1cm type IV protein secretion system, which translocates effectors into infected cells. A large number of such translocated proteins have been identified, but few of these proteins are necessary for intracellular replication of the pathogen, making it difficult to correlate these genes with specific cell-biological events associated with L. pneumophila infection. We report here the identification and characterization of a family of two substrates, SidJ and SdjA, with distinctive phenotypes. In contrast to many Dot/Icm substrates, whose expression levels are elevated when bacteria are grown to postexponential phase, SidJ is produced at a constant rate during the entire bacterial growth cycle. Mutation in sidJ causes a significant growth defect in both macrophage and amoeba hosts, but an sdjA mutant is detectably defective only in protozoan hosts. However, in the amoeba host a mutant lacking both sidJ and sdjA does not display a more severe growth defect than the sidJ mutant. Despite its significant intracellular growth defect, the sidJ mutant is still able to effectively evade fusion with lysosomes. Importantly, recruitment of endoplasmic reticulum (ER) proteins by vacuoles containing the sidJ mutant was considerably delayed in both mammalian and amoeba cells. Our results suggest that SidJ modulates host cellular pathways, contributing to the trafficking or retention of ER-derived vesicles to L. pneumophila vacuoles.
引用
收藏
页码:592 / 603
页数:12
相关论文
共 46 条
[1]  
ABUZANT A, 2006, CELL MICROBIOL
[2]   IcmS-dependent translocation of SdeA into macrophages by the Legionella pneumophila type IV secretion system [J].
Bardill, JP ;
Miller, JL ;
Vogel, JP .
MOLECULAR MICROBIOLOGY, 2005, 56 (01) :90-103
[3]   ALTERED INTRACELLULAR TARGETING PROPERTIES ASSOCIATED WITH MUTATIONS IN THE LEGIONELLA-PNEUMOPHILA DOTA GENE [J].
BERGER, KH ;
MERRIAM, JJ ;
ISBERG, RR .
MOLECULAR MICROBIOLOGY, 1994, 14 (04) :809-822
[4]   2 DISTINCT DEFECTS IN INTRACELLULAR GROWTH COMPLEMENTED BY A SINGLE GENETIC-LOCUS IN LEGIONELLA-PNEUMOPHILA [J].
BERGER, KH ;
ISBERG, RR .
MOLECULAR MICROBIOLOGY, 1993, 7 (01) :7-19
[5]   Expression of Legionella pneumophila virulence traits in response to growth conditions [J].
Byrne, B ;
Swanson, MS .
INFECTION AND IMMUNITY, 1998, 66 (07) :3029-3034
[6]   A yeast genetic system for the identification and characterization of substrate proteins transferred into host cells by the Legionella pneumophila Dot/lcm system [J].
Campodonico, EM ;
Chesnel, L ;
Roy, CR .
MOLECULAR MICROBIOLOGY, 2005, 56 (04) :918-933
[7]   Legionella effectors that promote nonlytic release from protozoa [J].
Chen, J ;
de Felipe, KS ;
Clarke, M ;
Lu, H ;
Anderson, OR ;
Segal, G ;
Shuman, HA .
SCIENCE, 2004, 303 (5662) :1358-1361
[8]  
Clarke M, 2002, J CELL SCI, V115, P2893
[9]   Identification of Icm protein complexes that play distinct roles in the biogenesis of an organelle permissive for Legionella pneumophila intracellular growth [J].
Coers, J ;
Kagan, JC ;
Matthews, M ;
Nagai, H ;
Zuckman, DM ;
Roy, CR .
MOLECULAR MICROBIOLOGY, 2000, 38 (04) :719-736
[10]   The Legionella pneumophila LidA protein:: a translocated substrate of the Dot/Icm system associated with maintenance of bacterial integrity [J].
Conover, GM ;
Derré, I ;
Vogel, JP ;
Isberg, RR .
MOLECULAR MICROBIOLOGY, 2003, 48 (02) :305-321