Fluctuations and dispersal rates in population dynamics

被引:15
作者
Kessler, David A. [1 ]
Sander, Leonard M. [2 ,3 ]
机构
[1] Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel
[2] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Michigan Ctr Theoret Phys, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会; 以色列科学基金会;
关键词
fluctuations; large-scale systems; living systems; DIFFUSION-LIMITED AGGREGATION; EVOLUTION; FRONT;
D O I
10.1103/PhysRevE.80.041907
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Dispersal of species to find a more favorable habitat is important in population dynamics. Dispersal rates evolve in response to the relative success of different dispersal strategies. In a simplified deterministic treatment [J. Dockery, V. Hutson, K. Mischaikow, and M. Pernarowski, J. Math. Biol. 37, 61 (1998)] of two species which differ only in their dispersal rates the slow species always dominates. We demonstrate that fluctuations can change this conclusion and can lead to dominance by the fast species or to coexistence, depending on parameters. We discuss two different effects of fluctuations and show that our results are consistent with more complex treatments that find that selected dispersal rates are not monotonic with the cost of migration.
引用
收藏
页数:4
相关论文
共 17 条
[1]   Shift in the velocity of a front due to a cutoff [J].
Brunet, E ;
Derrida, B .
PHYSICAL REVIEW E, 1997, 56 (03) :2597-2604
[2]   EVOLUTIONARILY STABLE DISPERSAL STRATEGIES [J].
COMINS, HN ;
HAMILTON, WD ;
MAY, RM .
JOURNAL OF THEORETICAL BIOLOGY, 1980, 82 (02) :205-230
[3]   The evolution of slow dispersal rates: a reaction diffusion model [J].
Dockery, J ;
Hutson, V ;
Mischaikow, K ;
Pernarowski, M .
JOURNAL OF MATHEMATICAL BIOLOGY, 1998, 37 (01) :61-83
[4]   The wave of advance of advantageous genes [J].
Fisher, RA .
ANNALS OF EUGENICS, 1937, 7 :355-369
[5]   DISPERSAL IN STABLE HABITATS [J].
HAMILTON, WD ;
MAY, RM .
NATURE, 1977, 269 (5629) :578-581
[6]   CAN SPATIAL VARIATION ALONE LEAD TO SELECTION FOR DISPERSAL [J].
HASTINGS, A .
THEORETICAL POPULATION BIOLOGY, 1983, 24 (03) :244-251
[7]   Evolution of migration rate in a spatially realistic metapopulation model [J].
Heino, M ;
Hanski, I .
AMERICAN NATURALIST, 2001, 157 (05) :495-511
[8]   Lattice effects observed in chaotic dynamics of experimental populations [J].
Henson, SM ;
Costantino, RF ;
Cushing, JM ;
Desharnais, RA ;
Dennis, B ;
King, AA .
SCIENCE, 2001, 294 (5542) :602-605
[9]   Persistence of an extinction-prone predator-prey interaction through metapopulation dynamics [J].
Holyoak, M ;
Lawler, SP .
ECOLOGY, 1996, 77 (06) :1867-1879
[10]   EVOLUTION OF DISPERSAL - THEORETICAL-MODELS AND EMPIRICAL TESTS USING BIRDS AND MAMMALS [J].
JOHNSON, ML ;
GAINES, MS .
ANNUAL REVIEW OF ECOLOGY AND SYSTEMATICS, 1990, 21 :449-480