Equivalent representations of set functions

被引:123
作者
Grabisch, M
Marichal, JL
Roubens, M
机构
[1] Univ Paris 06, LIP6, F-75015 Paris, France
[2] Univ Liege, FEGSS, Dept Management, B-4000 Liege, Belgium
[3] Univ Liege, Inst Math, B-4000 Liege, Belgium
关键词
set function; pseudo-Boolean function; Mobius inversion formula; Shapley and Banzhaf values; interaction indices; game theory; multicriteria decision making;
D O I
10.1287/moor.25.2.157.12225
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper introduces four alternative representations of a set function: the Mobius transformation, the co-Mobius transformation, and the interactions between elements of any subset of a given set as extensions of Shapley and Banzhaf values. The links between the five equivalent representations of a set function are emphasized in this presentation.
引用
收藏
页码:157 / 178
页数:22
相关论文
共 24 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS F
[2]  
Aumann R. J., 1974, Values of Non-Atomic Games
[3]  
Banzhaf JF, 1965, Rutgers Law Review, V19, P317
[4]   Interaction transform of set functions over a finite set [J].
Denneberg, D ;
Grabisch, M .
INFORMATION SCIENCES, 1999, 121 (1-2) :149-170
[5]  
Dubey P., 1979, Mathematics of Operations Research, V4, P99, DOI 10.1287/moor.4.2.99
[6]   CANONICAL REPRESENTATION OF SET-FUNCTIONS [J].
GILBOA, I ;
SCHMEIDLER, D .
MATHEMATICS OF OPERATIONS RESEARCH, 1995, 20 (01) :197-212
[7]   An axiomatic approach to the concept of interaction among players in cooperative games [J].
Grabisch, M ;
Roubens, M .
INTERNATIONAL JOURNAL OF GAME THEORY, 1999, 28 (04) :547-565
[8]   Alternative representations of discrete fuzzy measures for decision making [J].
Grabisch, M .
INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 1997, 5 (05) :587-607
[9]   k-order additive discrete fuzzy measures and their representation [J].
Grabisch, M .
FUZZY SETS AND SYSTEMS, 1997, 92 (02) :167-189
[10]  
Hammer P. L., 1992, ZOR, Methods and Models of Operations Research, V36, P3, DOI 10.1007/BF01541028