The genomic distribution of L1 elements: The role of insertion bias and natural selection

被引:43
作者
Graham, Todd [1 ]
Boissinot, Stephane
机构
[1] CUNY Queens Coll, Dept Biol, Flushing, NY 11367 USA
[2] CUNY, Grad Sch, New York, NY 10016 USA
[3] CUNY, Univ Ctr, New York, NY 10016 USA
来源
JOURNAL OF BIOMEDICINE AND BIOTECHNOLOGY | 2006年
关键词
D O I
10.1155/JBB/2006/75327
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
LINE-1 (L1) retrotransposons constitute the most successful family of retroelements in mammals and account for as much as 20% of mammalian DNA. L1 elements can be found in all genomic regions but they are far more abundant in AT-rich, gene-poor, and low-recombining regions of the genome. In addition, the sex chromosomes and some genes seem disproportionately enriched in L1 elements. Insertion bias and selective processes can both account for this biased distribution of L1 elements. L1 elements do not appear to insert randomly in the genome and this insertion bias can at least partially explain the genomic distribution of L1. The contrasted distribution of L1 and Alu elements suggests that postinsertional processes play a major role in shaping L1 distribution. The most likely mechanism is the loss of recently integrated L1 elements that are deleterious (negative selection) either because of disruption of gene function or their ability to mediate ectopic recombination. By comparison, the retention of L1 elements because of some positive effect is limited to a small fraction of the genome. Understanding the respective importance of insertion bias and selection will require a better knowledge of insertion mechanisms and the dynamics of L1 inserts in populations. Copyright (c) 2006 T. Graham and S. Boissinot.
引用
收藏
页数:5
相关论文
共 43 条
[1]   High concentrations of long interspersed nuclear element sequence distinguish monoallelically expressed genes [J].
Allen, E ;
Horvath, S ;
Tong, F ;
Kraft, P ;
Spiteri, E ;
Riggs, AD ;
Marahrens, Y .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (17) :9940-9945
[2]   Molecular evidence for a relationship between LINE-1 elements and X chromosome inactivation: The Lyon repeat hypothesis [J].
Bailey, JA ;
Carrel, L ;
Chakravarti, A ;
Eichler, EE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (12) :6634-6639
[3]   The Insertional history of an active family of L1 retrotransposons in humans [J].
Boissinot, S ;
Entezam, A ;
Young, L ;
Munson, PJ ;
Furano, AV .
GENOME RESEARCH, 2004, 14 (07) :1221-1231
[4]   Selection against deleterious LINE-1-containing loci in the human lineage [J].
Boissinot, S ;
Entezam, A ;
Furano, AV .
MOLECULAR BIOLOGY AND EVOLUTION, 2001, 18 (06) :926-935
[5]   DIFFERENTIAL DISTRIBUTION OF LONG AND SHORT INTERSPERSED ELEMENT SEQUENCES IN THE MOUSE GENOME - CHROMOSOME KARYOTYPING BY FLUORESCENCE INSITU HYBRIDIZATION [J].
BOYLE, AL ;
BALLARD, SG ;
WARD, DC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (19) :7757-7761
[6]   A Line 1 insertion in the Factor IX gene segregates with mild hemophilia B in dogs [J].
Brooks, MB ;
Gu, WK ;
Barnas, JL ;
Ray, J ;
Ray, K .
MAMMALIAN GENOME, 2003, 14 (11) :788-795
[7]   Unequal homologous recombination between LINE-1 elements as a mutational mechanism in human genetic disease [J].
Burwinkel, B ;
Kilimann, MW .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 277 (03) :513-517
[8]   Comparative sequence analysis of the X-inactivation center region in mouse, human, and bovine [J].
Chureau, C ;
Prissette, M ;
Bourdet, A ;
Barbe, V ;
Cattolico, L ;
Jones, L ;
Eggen, A ;
Avner, P ;
Duret, L .
GENOME RESEARCH, 2002, 12 (06) :894-908
[9]   What controls the length of noncoding DNA? [J].
Comeron, JM .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2001, 11 (06) :652-659
[10]   Targeting of human retrotransposon integration is directed by the specificity of the L1 endonuclease for regions of unusual DNA structure [J].
Cost, GJ ;
Boeke, JD .
BIOCHEMISTRY, 1998, 37 (51) :18081-18093