One-step synthesis of graphene/SnO2 nanocomposites and its application in electrochemical supercapacitors

被引:393
作者
Li, Fenghua [1 ,2 ]
Song, Jiangfeng [1 ,2 ]
Yang, Huafeng [1 ,2 ]
Gan, Shiyu [1 ,2 ]
Zhang, Qixian [1 ,2 ]
Han, Dongxue [1 ,2 ,3 ]
Ivaska, Ari [3 ]
Niu, Li [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Electroanalyt Chem, Changchun 130022, Peoples R China
[2] Chinese Acad Sci, Grad Univ, Changchun 130022, Peoples R China
[3] Abo Akad Univ, Proc Chem Ctr, Analyt Chem Lab, FI-20500 Turku, Finland
关键词
GRAPHITE OXIDE; AQUEOUS DISPERSIONS; CARBON MATERIALS; REDUCTION; STORAGE; NANOPARTICLES; PERFORMANCE; NANOSHEETS; SHEETS;
D O I
10.1088/0957-4484/20/45/455602
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A one-step method was developed to fabricate conductive graphene/SnO2 (GS) nanocomposites in acidic solution. Graphite oxides were reduced by SnCl2 to graphene sheets in the presence of HCl and urea. The reducing process was accompanied by generation of SnO2 nanoparticles. The structure and composition of GS nanocomposites were confirmed by means of transmission electron microscopy, x-ray photoelectron and Raman spectroscopy. Moreover, the ultracapacitor characteristics of GS nanocomposites were studied by cyclic voltammograms (CVs) and electrical impedance spectroscopy (EIS). The CVs of GS nanocomposites are nearly rectangular in shape and the specific capacitance degrades slightly as the voltage scan rate is increased. The EIS of GS nanocomposites presents a phase angle close to p/2 at low frequency, indicating a good capacitive behavior. In addition, the GS nanocomposites could be promisingly applied in many fields such as nanoelectronics, ultracapacitors, sensors, nanocomposites, batteries and gas storage.
引用
收藏
页数:6
相关论文
共 37 条
[1]   SnO2/carbon nanotube nanocomposites synthesized in supercritical fluids:: highly efficient materials for use as a chemical sensor and as the anode of a lithium-ion battery [J].
An, Guimin ;
Na, Na ;
Zhang, Xinrong ;
Miao, Zhenjiang ;
Miao, Shiding ;
Ding, Kunlun ;
Liu, Zhimin .
NANOTECHNOLOGY, 2007, 18 (43)
[2]   Chemical Modification of Epitaxial Graphene: Spontaneous Grafting of Aryl Groups [J].
Bekyarova, Elena ;
Itkis, Mikhail E. ;
Ramesh, Palanisamy ;
Berger, Claire ;
Sprinkle, Michael ;
de Heer, Walt A. ;
Haddon, Robert C. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (04) :1336-+
[3]   Preparation and layer-by-layer self-assembly of silver nanoparticles capped by graphite oxide nanosheets [J].
Cassagneau, T ;
Fendler, JH .
JOURNAL OF PHYSICAL CHEMISTRY B, 1999, 103 (11) :1789-1793
[4]   Hydrogel-polymer electrolytes for electrochemical capacitors: an overview [J].
Choudhury, N. A. ;
Sampath, S. ;
Shukla, A. K. .
ENERGY & ENVIRONMENTAL SCIENCE, 2009, 2 (01) :55-67
[5]   Carbon materials for the electrochemical storage of energy in capacitors [J].
Frackowiak, E ;
Béguin, F .
CARBON, 2001, 39 (06) :937-950
[6]   Carbon materials for supercapacitor application [J].
Frackowiak, Elzbieta .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2007, 9 (15) :1774-1785
[7]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[8]   Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations [J].
Kovtyukhova, NI ;
Ollivier, PJ ;
Martin, BR ;
Mallouk, TE ;
Chizhik, SA ;
Buzaneva, EV ;
Gorchinskiy, AD .
CHEMISTRY OF MATERIALS, 1999, 11 (03) :771-778
[9]   Textural and electrochemical properties of carbon replica obtained from styryl organo-modified layered double hydroxide [J].
Leroux, F ;
Raymundo-Piñero, E ;
Nedelec, JM ;
Béguin, F .
JOURNAL OF MATERIALS CHEMISTRY, 2006, 16 (21) :2074-2081
[10]   Practical and theoretical limits for electrochemical double-layer capacitors [J].
Lewandowski, Andrzej ;
Galinski, Maciej .
JOURNAL OF POWER SOURCES, 2007, 173 (02) :822-828