Canonical analysis of two Euclidean subspaces and its applications

被引:22
作者
Dauxois, J
Nkiet, GM
机构
[1] Lab. Statistique Probabilites, U.R.A. C.N.R.S. D745, Université Paul Sabatier, 31062 Toulouse Cedex, 118, route de Narbonne
关键词
D O I
10.1016/S0024-3795(96)00244-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop a canonical analysis both without constraints and under constraints for subspaces of Euclidean space. We also look into a canonical analysis of operators. We then apply the definitions and some of the results to the field of probability and statistics. (C) 1997 Elsevier Science Inc.
引用
收藏
页码:355 / 388
页数:34
相关论文
共 44 条
[1]  
ANDERSON TW, 1958, INTRO MULTIVARIATE A
[2]  
[Anonymous], 1963, PROBABILITIES ALGEBR
[3]  
[Anonymous], 1990, GEN MULTIVARIATE ANA
[4]  
[Anonymous], 1981, PROBABILITY DISTRIBU
[5]  
[Anonymous], 1961, Journal of the Australian Mathematical Society
[6]  
ARCONTE A, 1980, THESIS U PAU PAYS AD
[7]  
Birman M. Sh., 1987, SPECTRAL THEORY SELF
[8]   CANONICAL-ANALYSIS OF CONTINGENCY-TABLES WITH LINEAR CONSTRAINTS [J].
BOCKENHOLT, U ;
BOCKENHOLT, I .
PSYCHOMETRIKA, 1990, 55 (04) :633-639
[9]  
BOURBAKI N, 1958, ELEMENTS MATH, pCH3
[10]  
BOUTAYED A, 1983, THESIS U PAU PAYS AD