Three-dimensional silicon inverse photonic quasicrystals for infrared wavelengths

被引:106
作者
Ledermann, Alexandra
Cademartiri, Ludovico
Hermatschweiler, Martin
Toninelli, Costanza
Ozin, Geoffrey A.
Wiersma, Diederik S.
Wegener, Martin
Von Freymann, Georg
机构
[1] Univ Karlsruhe TH, Inst Angew Phys, D-76131 Karlsruhe, Germany
[2] Univ Karlsruhe TH, CFN, DFG, D-76131 Karlsruhe, Germany
[3] Univ Toronto, Dept Chem, Toronto, ON M5S 3H6, Canada
[4] INFM, I-50019 Florence, Italy
[5] LENS, I-50019 Florence, Italy
[6] Forschungszentrum Karlsruhe, Inst Nanotechnol, D-76021 Karlsruhe, Germany
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1038/nmat1786
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Quasicrystals are a class of lattices characterized by a lack of translational symmetry. Nevertheless, the points of the lattice are deterministically arranged, obeying rotational symmetry. Thus, we expect properties that are different from both crystals and glasses. Indeed, naturally occurring electronic quasicrystals (for example, AlPdMn metal alloys) show peculiar electronic, vibrational and physico-chemical properties. Regarding artificial quasicrystals for electromagnetic waves, three-dimensional (3D) structures have recently been realized at GHz frequencies and 2D structures have been reported for the near-infrared region. Here, we report on the first fabrication and characterization of 3D quasicrystals for infrared frequencies. Using direct laser writing combined with a silicon inversion procedure, we achieve high-quality silicon inverse icosahedral structures. Both polymeric and silicon quasicrystals are characterized by means of electron microscopy and visible-light Laue diffraction. The diffraction patterns of structures with a local five-fold real-space symmetry axis reveal a ten-fold symmetry as required by theory for 3D structures. © 2006 Nature Publishing Group.
引用
收藏
页码:942 / 945
页数:4
相关论文
共 16 条
[1]  
[Anonymous], 1992, QUASICRYSTALS
[2]   Direct laser writing of three-dimensional photonic-crystal templates for telecommunications [J].
Deubel, M ;
Von Freymann, G ;
Wegener, M ;
Pereira, S ;
Busch, K ;
Soukoulis, CM .
NATURE MATERIALS, 2004, 3 (07) :444-447
[3]   3D-2D-3D photonic crystal heterostructures fabricated by direct laser writing [J].
Deubel, M ;
Wegener, M ;
Linden, S ;
von Freymann, G ;
John, S .
OPTICS LETTERS, 2006, 31 (06) :805-807
[4]   Wave and defect dynamics in nonlinear photonic quasicrystals [J].
Freedman, B ;
Bartal, G ;
Segev, M ;
Lifshitz, R ;
Christodoulides, DN ;
Fleischer, JW .
NATURE, 2006, 440 (7088) :1166-1169
[5]   Diffraction and transmission of light in low-refractive index Penrose-tiled photonic quasicrystals [J].
Kaliteevski, MA ;
Brand, S ;
Abram, RA ;
Krauss, TF ;
Millar, P ;
De la Rue, RM .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2001, 13 (46) :10459-10470
[6]   Two-dimensional Penrose-tiled photonic quasicrystals: Diffraction of light and fractal density of modes [J].
Kaliteevski, M.A. ;
Brand, S. ;
Abram, R.A. ;
Krauss, T.F. ;
De La Rue, R.M. ;
Millar, P. .
1771, Taylor and Francis Ltd. (47)
[7]   Finer features for functional microdevices - Micromachines can be created with higher resolution using two-photon absorption. [J].
Kawata, S ;
Sun, HB ;
Tanaka, T ;
Takada, K .
NATURE, 2001, 412 (6848) :697-698
[8]   Optical extinction due to intrinsic structural variations of photonic crystals [J].
Koenderink, AF ;
Lagendijk, A ;
Vos, WL .
PHYSICAL REVIEW B, 2005, 72 (15)
[9]   ELASTICITY AND DISLOCATIONS IN PENTAGONAL AND ICOSAHEDRAL QUASICRYSTALS [J].
LEVINE, D ;
LUBENSKY, TC ;
OSTLUND, S ;
RAMASWAMY, S ;
STEINHARDT, PJ ;
TONER, J .
PHYSICAL REVIEW LETTERS, 1985, 54 (14) :1520-1523
[10]  
LI EH, 1988, J PHYS C SOLID STATE, V21, P495