The interplay of hydrogen-bonding and metal-coordination motifs in the formation of supramolecular patterns: Copper/zinc malonates-aminopyrimidine complexes

被引:20
作者
Hemamalini, M.
Muthiah, P. Thomas [1 ]
Butcher, R. J.
Lynch, D. E.
机构
[1] Bharathidasan Univ, Sch Chem, Tiruchirappalli 620024, India
[2] Howard Univ, Dept Chem, Washington, DC 20059 USA
[3] Coventry Univ, Fac Hlth & Life Sci, Coventry CV1 5FB, W Midlands, England
关键词
hydrogen-bonding motif; metal-coordination motif; hydrogen-bonded duplex; carboxyl-carboxylate interactions;
D O I
10.1016/j.inoche.2006.07.032
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
The X-ray crystal structures of 1 [2[AMPYH]center dot[(Cu (H2O) (mal)(2))]:2H(2)O] and 2 [2[AMPYH]center dot[ZnBr (Hmal) (mal)]:2H(2)O] [mal = malonate; Hmal = hydrogen malonate; AMPYH = 2-amino-4, 6-dimethylpyrimidinium] reveal the interplay of metal-coordination motifs and the hydrogen-bonding patterns. In both the structures, the 2-amino-4,6-dimethylpyrimidine cations are not directly coordinated to copper and zinc, but are hydrogen-bonded to the malonate ion. The protonated endocyclic nitrogen and the amino group of 2-amino-4.6-dimethylpyrimidine molecule interact with malonate ligand via a pair of N-H center dot center dot center dot O hydrogen-bonds, (with graph set notation R-2(2)(8)) whereas the unprotonated endocyclic nitrogen and the amino group interact with the malonate ligand via N-H..O and C-H center dot center dot center dot N hydrogen-bonds forming the same R-2(2)(8) motif. The combination of hydrogen-bonding motif and metal-coordination motif creates a novel supramolecular motif. The interplay of the hydrogen-bonding motif and metal-coordination motif via hydrogen-bonds leads to similar supramolecular motifs in both the structures. (C) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1155 / 1160
页数:6
相关论文
共 21 条
[1]   Probabilities of formation of bimolecular cyclic hydrogen-bonded motifs in organic crystal structures: a systematic database analysis [J].
Allen, FH ;
Raithby, PR ;
Shields, GP ;
Taylor, R .
CHEMICAL COMMUNICATIONS, 1998, (09) :1043-1044
[2]   PATTERNS IN HYDROGEN BONDING - FUNCTIONALITY AND GRAPH SET ANALYSIS IN CRYSTALS [J].
BERNSTEIN, J ;
DAVIS, RE ;
SHIMONI, L ;
CHANG, NL .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 1995, 34 (15) :1555-1573
[3]  
BIMITROVA GI, 1974, DOKL AKAD NAUK SSSR, V216, P1055
[4]  
Desiraju G. R., 1989, DESIGN ORGANIC SOLID
[5]   Hydrogen-bonding interactions between formic acid and pyridine [J].
Fernandez-Berridi, MJ ;
Iruin, JJ ;
Irusta, L ;
Mercero, JM ;
Ugalde, JM .
JOURNAL OF PHYSICAL CHEMISTRY A, 2002, 106 (16) :4187-4191
[6]   Tetraapuadithiocyanatonickel(II) tetrakis-(2-amino-4,6-dimethylpyrimidine) dihydrate [J].
Hemamalini, M ;
Muthiah, PT ;
Butcher, RJ .
ACTA CRYSTALLOGRAPHICA SECTION E-CRYSTALLOGRAPHIC COMMUNICATIONS, 2005, 61 :M204-M206
[7]   Trimethoprim-hydrogen malonate (1/1) [J].
Hemamalini, M ;
Muthiah, PT ;
Butcher, RJ .
ACTA CRYSTALLOGRAPHICA SECTION E-CRYSTALLOGRAPHIC COMMUNICATIONS, 2004, 60 :O2350-O2352
[8]   Hydrogen-bonded supramolecular motifs in trimethoprim-terephthalate-terephthalic acid (2/1/1) [J].
Hemamalini, M ;
Muthiah, PT ;
Bocelli, G ;
Cantoni, A .
ACTA CRYSTALLOGRAPHICA SECTION E-STRUCTURE REPORTS ONLINE, 2003, 59 :O14-O17
[9]  
Hitching G.H., 1998, DESIGN ENZYME INHIBI, P343
[10]   CRYSTALLOGRAPHIC AND MOLECULAR-ORBITAL STUDIES ON THE GEOMETRY OF ANTIFOLATE DRUGS [J].
HUNT, WE ;
SCHWALBE, CH ;
BIRD, K ;
MALLINSON, PD .
BIOCHEMICAL JOURNAL, 1980, 187 (02) :533-536