The genome sequence of the capnophilic rumen bacterium Mannheimia succiniciproducens

被引:150
作者
Hong, SH
Kim, JS
Lee, SY
In, YH
Choi, SS
Rih, JK
Kim, CH
Jeong, H
Hur, CG
Kim, JJ
机构
[1] Korea Adv Inst Sci & Technol, Metab & Biomol Engn Natl Res Lab, Dept Chem & Biomol Engn, Dept Biosyst,Bioproc Engn Res Ctr, Taejon 305701, South Korea
[2] Korea Adv Inst Sci & Technol, Bioinformat Res Ctr, Taejon 305701, South Korea
[3] Bioinfomatix Inc, Seoul 135925, South Korea
[4] KRIBB, Taejon 305333, South Korea
[5] GenoTech Corp, Taejon 305390, South Korea
[6] IDRTech Inc, Taejon 305390, South Korea
关键词
D O I
10.1038/nbt1010
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The rumen represents the first section of a ruminant animal's stomach, where feed is collected and mixed with microorganisms for initial digestion. The major gas produced in the rumen is CO2 (65.5 mol%), yet the metabolic characteristics of capnophilic (CO2-loving) microorganisms are not well understood. Here we report the 2,314,078 base pair genome sequence of Mannheimia succiniciproducens MBEL55E, a recently isolated capnophilic Gram-negative bacterium from bovine rumen, and analyze its genome contents and metabolic characteristics. The metabolism of M. succiniciproducens was found to be well adapted to the oxygen-free rumen by using fumarate as a major electron acceptor. Genome-scale metabolic flux analysis indicated that CO2 is important for the carboxylation of phosphoenolpyruvate to oxaloacetate, which is converted to succinic acid by the reductive tricarboxylic acid cycle and menaquinone systems. This characteristic metabolism allows highly efficient production of succinic acid, an important four-carbon industrial chemical.
引用
收藏
页码:1275 / 1281
页数:7
相关论文
共 32 条
  • [1] BASIC LOCAL ALIGNMENT SEARCH TOOL
    ALTSCHUL, SF
    GISH, W
    MILLER, W
    MYERS, EW
    LIPMAN, DJ
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) : 403 - 410
  • [2] Taxonomic relationships of the [Pasteurella] haemolytica complex as evaluated by DNA-DNA hybridizations and 16S rRNA sequencing with proposal of Mannheimia haemolytica gen. nov., comb, nov., Mannheimia granulomatis comb, nov., Mannheimia glucosida sp. nov., Mannheimia ruminalis sp. nov., and Mannheimia varigena sp. nov.
    Angen, O
    Mutters, R
    Caugant, DA
    Olsen, JE
    Bisgaard, M
    [J]. INTERNATIONAL JOURNAL OF SYSTEMATIC BACTERIOLOGY, 1999, 49 : 67 - 86
  • [3] The complete genome sequence of Escherichia coli K-12
    Blattner, FR
    Plunkett, G
    Bloch, CA
    Perna, NT
    Burland, V
    Riley, M
    ColladoVides, J
    Glasner, JD
    Rode, CK
    Mayhew, GF
    Gregor, J
    Davis, NW
    Kirkpatrick, HA
    Goeden, MA
    Rose, DJ
    Mau, B
    Shao, Y
    [J]. SCIENCE, 1997, 277 (5331) : 1453 - +
  • [4] BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
  • [5] BURTON K, 1956, BIOCHEM J, V62, P314
  • [6] Church D.C., 1988, The Ruminant Animal, Digestive Physiology and Nutrition
  • [7] Improved microbial gene identification with GLIMMER
    Delcher, AL
    Harmon, D
    Kasif, S
    White, O
    Salzberg, SL
    [J]. NUCLEIC ACIDS RESEARCH, 1999, 27 (23) : 4636 - 4641
  • [8] Profile hidden Markov models
    Eddy, SR
    [J]. BIOINFORMATICS, 1998, 14 (09) : 755 - 763
  • [9] In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data
    Edwards, JS
    Ibarra, RU
    Palsson, BO
    [J]. NATURE BIOTECHNOLOGY, 2001, 19 (02) : 125 - 130
  • [10] Cluster analysis and display of genome-wide expression patterns
    Eisen, MB
    Spellman, PT
    Brown, PO
    Botstein, D
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (25) : 14863 - 14868