A multirate time stepping strategy for stiff ordinary differential equations

被引:73
作者
Savcenco, V. [1 ]
Hundsdorfer, W. [1 ]
Verwer, J. G. [1 ]
机构
[1] CWI, NL-1090 GB Amsterdam, Netherlands
关键词
multirate time stepping; local time stepping; ordinary differential equations;
D O I
10.1007/s10543-006-0095-7
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
To solve ODE systems with different time scales which are localized over the components, multirate time stepping is examined. In this paper we introduce a self-adjusting multirate time stepping strategy, in which the step size for a particular component is determined by its own local temporal variation, instead of using a single step size for the whole system. We primarily consider implicit time stepping methods, suitable for stiff or mildly stiff ODEs. Numerical results with our multirate strategy are presented for several test problems. Comparisons with the corresponding single-rate schemes show that substantial gains in computational work and CPU times can be obtained.
引用
收藏
页码:137 / 155
页数:19
相关论文
共 14 条
[1]   A multirate W-method for electrical networks in state-space formulation [J].
Bartel, A ;
Günther, M .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 147 (02) :411-425
[2]  
BARTEL A, 2000, 200084 PHIL EL
[3]  
Engstler C, 1997, COMPUTING, V58, P173, DOI 10.1007/BF02684438
[4]   MUR8: a multirate extension of the eighth-order Dormand-Prince method [J].
Engstler, C ;
Lubich, C .
APPLIED NUMERICAL MATHEMATICS, 1997, 25 (2-3) :185-192
[5]  
ESTEP DJ, 2000, MEM AM MATH SOC, P146
[6]   MULTIRATE LINEAR MULTISTEP METHODS [J].
GEAR, CW ;
WELLS, DR .
BIT, 1984, 24 (04) :484-502
[7]   Multirate partitioned Runge-Kutta methods [J].
Günther, M ;
Kværno, A ;
Rentrop, P .
BIT, 2001, 41 (03) :504-514
[8]  
Hairer E., 1996, Springer Series in Computational Mathematics, V14, DOI DOI 10.1007/978-3-642-05221-7
[9]  
Hundsdorfer W., 2003, NUMERICAL SOLUTION T
[10]  
JANSSON J, 2004, ALGORITHMS MULTIADAP