Semicoarsening multigrid on distributed memory machines

被引:65
作者
Brown, PN [1 ]
Falgout, RD [1 ]
Jones, JE [1 ]
机构
[1] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94550 USA
关键词
parallel multigrid methods; diffusion equations; scalability studies;
D O I
10.1137/S1064827598339141
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents the results of a scalability study for a three-dimensional semi-coarsening multigrid solver on a distributed memory computer. In particular, we are interested in the scalability of the solver how the solution time varies as both problem size and number of processors are increased. For an iterative linear solver, scalability involves both algorithmic issues and implementation issues. We examine the scalability of the solver theoretically by constructing a simple parallel model and experimentally by results obtained on an IBM SP. The results are compared with those obtained for other solvers on the same computer.
引用
收藏
页码:1823 / 1834
页数:12
相关论文
共 12 条
[1]   A parallel multigrid preconditioned conjugate gradient algorithm for groundwater flow simulations [J].
Ashby, SF ;
Falgout, RD .
NUCLEAR SCIENCE AND ENGINEERING, 1996, 124 (01) :145-159
[2]   Iterative linear solvers in a 2D radiation-hydrodynamics code: Methods and performance [J].
Baldwin, C ;
Brown, PN ;
Falgout, R ;
Graziani, F ;
Jones, J .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 154 (01) :1-40
[3]   Some multigrid algorithms for elliptic problems on data parallel machines [J].
Bandy, VA ;
Dendy, JE ;
Spangenberg, WH .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (01) :74-86
[4]   BLACK-BOX MULTIGRID [J].
DENDY, JE .
JOURNAL OF COMPUTATIONAL PHYSICS, 1982, 48 (03) :366-386
[5]   A SEMICOARSENING MULTIGRID ALGORITHM FOR SIMD-MACHINES [J].
DENDY, JE ;
IDA, MP ;
RUTLEDGE, JM .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1992, 13 (06) :1460-1469
[6]   SPECIAL ISSUE - MPI - A MESSAGE-PASSING INTERFACE STANDARD [J].
DONGARRA, J ;
WALKER, D ;
LUSK, E ;
KNIGHTEN, B ;
SNIR, M ;
GEIST, A ;
OTTO, S ;
HEMPEL, R ;
LUSK, E ;
GROPP, W ;
COWNIE, J ;
SKJELLUM, T ;
CLARKE, L ;
LITTLEFIELD, R ;
SEARS, M ;
HUSSLEDERMAN, S ;
ANDERSON, E ;
BERRYMAN, S ;
FEENEY, J ;
FRYE, D ;
HART, L ;
HO, A ;
KOHL, J ;
MADAMS, P ;
MOSHER, C ;
PIERCE, P ;
SCHIKUTA, E ;
VOIGT, RG ;
BABB, R ;
BJORNSON, R ;
FERNANDO, V ;
GLENDINNING, I ;
HAUPT, T ;
HO, CTH ;
KRAUSS, S ;
MAINWARING, A ;
NESSETT, D ;
RANKA, S ;
SINGH, A ;
WEEKS, D ;
BARON, J ;
DOSS, N ;
FINEBERG, S ;
GREENBERG, A ;
HELLER, D ;
HOWELL, G ;
LEARY, B ;
MCBRYAN, O ;
PACHECO, P ;
RIGSBEE, P .
INTERNATIONAL JOURNAL OF SUPERCOMPUTER APPLICATIONS AND HIGH PERFORMANCE COMPUTING, 1994, 8 (3-4) :165-&
[7]  
JONES JE, 1997, PARALLEL NUMERICAL A, P203
[8]  
MCCOMBS J, 1997, UNPUB PARALLEL PERFO
[9]   THE IMPROVED ROBUSTNESS OF MULTIGRID ELLIPTIC SOLVERS BASED ON MULTIPLE SEMICOARSENED GRIDS [J].
NAIK, NH ;
VANROSENDALE, J .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1993, 30 (01) :215-229
[10]  
Ruge J. W., 1987, Multigrid methods, P73, DOI DOI 10.1007/S10444-014-9395-7