Z(4)-Kerdock codes, orthogonal spreads, and extremal euclidean line-sets

被引:195
作者
Calderbank, AR
Cameron, PJ
Kantor, WM
Seidel, JJ
机构
[1] UNIV LONDON QUEEN MARY & WESTFIELD COLL, SCH MATH SCI, LONDON E1 4NS, ENGLAND
[2] UNIV OREGON, DEPT MATH, EUGENE, OR 97403 USA
[3] EINDHOVEN UNIV TECHNOL, FAC MATH & COMP SCI, NL-5600 MB EINDHOVEN, NETHERLANDS
关键词
D O I
10.1112/S0024611597000403
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:436 / 480
页数:45
相关论文
共 37 条
[1]  
[Anonymous], INDAG MATH
[2]  
Aschbacher M., 1986, FINITE GROUP THEORY
[3]  
BADER L, 1994, B UNIONE MAT ITAL, V8A, P383
[4]   ON THE PREPARATA AND GOETHALS CODES [J].
BAKER, RD ;
VANLINT, JH ;
WILSON, RM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1983, 29 (03) :342-345
[5]  
BLOKHUIS A, 1986, S MATH, V28, P145
[6]  
BOUWER AE, 1989, DISTANCE REGULAR GRA
[7]  
BROUWER AE, 1993, CODES CRYPTOGR, V3, P95
[8]   GENERALIZATIONS OF KERVAIRE INVARIANT [J].
BROWN, EH .
ANNALS OF MATHEMATICS, 1972, 95 (02) :368-&
[9]  
CAMERON PJ, 1991, LONDON MATH SOC LECT, V22
[10]   ALTERNATING BILINEAR FORMS OVER GF(Q) [J].
DELSARTE, P ;
GOETHALS, JM .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1975, 19 (01) :26-50