Two-state membrane potential fluctuations driven by weak pairwise correlations

被引:8
作者
Benucci, A [1 ]
Verschure, PFMJ
König, P
机构
[1] Univ Zurich, Inst Neuroinformat, CH-8057 Zurich, Switzerland
[2] Swiss Fed Inst Technol, CH-8057 Zurich, Switzerland
关键词
D O I
10.1162/0899766041941871
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Physiological experiments demonstrate the existence of weak pairwise correlations of neuronal activity in mammalian cortex (Singer, 1993). The functional implications of this correlated activity are hotly debated (Roskies et al., 1999). Nevertheless, it is generally considered a widespread feature of cortical dynamics. In recent years, another line of research has attracted great interest: the observation of a bimodal distribution of the membrane potential defining up states and down states at the single cell level (Wilson & Kawaguchi, 1996; Steriade, Contreras, Amzica, 1994; Contreras Steriade, 1995; Steriade, 2001). Here we use a theoretical approach to demonstrate that the latter phenomenon is a natural consequence of the former. In particular, we show that weak pairwise correlations of the inputs to a compartmental model of a layer V pyramidal cell can induce bimodality in its membrane potential. We show how this relationship can account for the observed increase of the power in the gamma-frequency band during up states, as well as the increase in the standard deviation and fraction of time spent in the depolarized state (Anderson, Lampl, Reichova, Carandini, & Ferster, 2000). In order to quantify the relationship between the correlation properties of a cortical network and the bistable dynamics of single neurons, we introduce a number of new indices. Subsequently, we demonstrate that a quantitative agreement with the experimental data can be achieved, introducing voltage-dependent mechanisms in our neuronal model such as Ca2+- and Ca2+-dependent K+ channels. In addition, we show that the up states and down states of the membrane potential are dependent on the dendritic morphology of cortical neurons. Furthermore, bringing together network and single cell dynamics under a unified view allows the direct transfer of results obtained in one context to the other and suggests a new experimental paradigm: the use of specific intracellular analysis as a powerful tool to reveal the properties of the correlation structure present in the network dynamics.
引用
收藏
页码:2351 / 2378
页数:28
相关论文
共 58 条
[1]   SIGNAL DELAY AND INPUT SYNCHRONIZATION IN PASSIVE DENDRITIC STRUCTURES [J].
AGMONSNIR, H ;
SEGEV, I .
JOURNAL OF NEUROPHYSIOLOGY, 1993, 70 (05) :2066-2085
[2]   Stimulus dependence of two-state fluctuations of membrane potential in cat visual cortex [J].
Anderson, J ;
Lampl, I ;
Reichova, I ;
Carandini, M ;
Ferster, D .
NATURE NEUROSCIENCE, 2000, 3 (06) :617-621
[3]   Dynamic spike threshold reveals a mechanism for synaptic coincidence detection in cortical neurons in vivo [J].
Azouz, R ;
Gray, CM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (14) :8110-8115
[4]   Adaptive coincidence detection and dynamic gain control in visual cortical neurons in vivo [J].
Azouz, R ;
Gray, CM .
NEURON, 2003, 37 (03) :513-523
[5]   Spike timing in the mammalian visual system [J].
Bair, W .
CURRENT OPINION IN NEUROBIOLOGY, 1999, 9 (04) :447-453
[6]   Existence of high-order correlations in cortical activity -: art. no. 041905 [J].
Benucci, A ;
Verschure, PFMJ ;
König, P .
PHYSICAL REVIEW E, 2003, 68 (04)
[7]   High Ih channel density in the distal apical dendrite of layer V pyramidal cells increases bidirectional attenuation of EPSPs [J].
Berger, T ;
Larkum, ME ;
Lüscher, HR .
JOURNAL OF NEUROPHYSIOLOGY, 2001, 85 (02) :855-868
[8]   THE EFFECT OF SYNCHRONIZED INPUTS AT THE SINGLE NEURON LEVEL [J].
BERNANDER, O ;
KOCH, C ;
USHER, M .
NEURAL COMPUTATION, 1994, 6 (04) :622-641
[9]   AMPLIFICATION AND LINEARIZATION OF DISTAL SYNAPTIC INPUT TO CORTICAL PYRAMIDAL CELLS [J].
BERNANDER, O ;
KOCH, C ;
DOUGLAS, RJ .
JOURNAL OF NEUROPHYSIOLOGY, 1994, 72 (06) :2743-2753
[10]   The effects of pair-wise and higher-order correlations on the firing rate of a postsynaptic neuron [J].
Bohte, SM ;
Spekreijse, H ;
Roelfsema, PR .
NEURAL COMPUTATION, 2000, 12 (01) :153-179