Functions of carotenoids in xanthorhodopsin and archaerhodopsin, from action spectra of photoinhibition of cell respiration

被引:37
作者
Boichenko, Vladimir A.
Wang, Jennifer M.
Anton, Josefa
Lanyi, Janos K.
Balashov, Sergei P.
机构
[1] Univ Calif Irvine, Dept Physiol & Biophys, Irvine, CA 92697 USA
[2] Russian Acad Sci, Inst Basic Biol Problems, Pushchino 142290, Russia
[3] Univ Alicante, Div Microbiol, E-03080 Alicante, Spain
来源
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS | 2006年 / 1757卷 / 12期
关键词
xanthorhodopsin; salinixanthin; energy transfer; archaerhodopsin; bacterioruberin; Salinibacter ruber;
D O I
10.1016/j.bbabio.2006.08.012
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The recent discovery of a carotenoid light-harvesting antenna in xanthorhodopsin, a retinal-based proton pump in Salinibacter ruber, made use of photoinhibition of respiration in whole cells to obtain action spectra [Balashov et al. Science 309, (2005) 2061-2064]. Here we provide further details of this phenomenon, and compare action spectra in three different systems where carotenoids have different functions or efficiencies of light-harvesting. The kinetics of light-induced inhibition of respiration in Salinibacter ruber was determined with single short flashes, and the photochemical cross section of the photoreaction was estimated. These measurements confirm that the xanthorhodopsin complex includes no more than a few, and most likely only one, carotenoid molecule, which is far less than the core complex antenna of photosynthetic bacteria. Although the total cross-section of light absorption in the purple bacterium Rhodospirillum rubrum greatly exceeds that in Salinibacter, the cross-sections are roughly equivalent in the shared wavelength range. We show further that despite interaction of bacterioruberin with archaerhodopsin, another retinal-based proton pump, there is no significant energy transfer from this carotenoid. This emphasizes the uniqueness of the salinixanthin-retinal interaction in xanthorhodopsin, and indicates that bacterioruberin in Halorubrum species has a structural or photoprotective rather than energetic role. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1649 / 1656
页数:8
相关论文
共 47 条
[1]   Salinibacter ruber gen. nov., sp nov., a novel, extremely halophilic member of the Bacteria from saltern crystallizer ponds [J].
Antón, J ;
Oren, A ;
Benlloch, S ;
Rodríguez-Valera, F ;
Amann, R ;
Rosselló-Mora, R .
INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 2002, 52 :485-491
[2]   Extremely halophilic Bacteria in crystallizer ponds from solar salterns [J].
Antón, J ;
Rosselló-Mora, R ;
Rodríguez-Valera, F ;
Amann, R .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2000, 66 (07) :3052-3057
[3]  
Balashov S. P., 1988, PHYSICOCHEMICAL BIOL, P1
[4]   Xanthorhodopsin:: A proton pump with a light-harvesting carotenoid antenna [J].
Balashov, SP ;
Imasheva, ES ;
Boichenko, VA ;
Antón, J ;
Wang, JM ;
Lanyi, JK .
SCIENCE, 2005, 309 (5743) :2061-2064
[5]   Bacterial rhodopsin:: Evidence for a new type of phototrophy in the sea [J].
Béjà, O ;
Aravind, L ;
Koonin, EV ;
Suzuki, MT ;
Hadd, A ;
Nguyen, LP ;
Jovanovich, S ;
Gates, CM ;
Feldman, RA ;
Spudich, JL ;
Spudich, EN ;
DeLong, EF .
SCIENCE, 2000, 289 (5486) :1902-1906
[6]   Proteorhodopsin phototrophy in the ocean [J].
Béjà, O ;
Spudich, EN ;
Spudich, JL ;
Leclerc, M ;
DeLong, EF .
NATURE, 2001, 411 (6839) :786-789
[7]  
Benlloch S, 2001, MICROB ECOL, V41, P12
[8]  
Boichenko V. A., 2004, Biophysics, V49, P238
[9]  
BOICHENKO VA, 1993, Z NATURFORSCH C, V48, P224
[10]  
BOICHENKO VA, 1994, BIOCHEMISTRY-MOSCOW+, V59, P885