Septin-dependent assembly of a cell cycle-regulatory module in Sacharomyces cerevisiae

被引:231
作者
Longtine, MS
Theesfeld, CL
McMillan, JN
Weaver, E
Pringle, JR
Lew, DJ
机构
[1] Duke Univ, Med Ctr, Dept Pharmacol & Canc Biol, Durham, NC 27710 USA
[2] Univ N Carolina, Dept Biol, Chapel Hill, NC 27599 USA
[3] Univ N Carolina, Program Mol Biol & Biotechnol, Chapel Hill, NC 27599 USA
关键词
D O I
10.1128/MCB.20.11.4049-4061.2000
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Saccharomyces cerevisiae septin mutants have pleiotropic defects, which include the formation of abnormally elongated buds. This bud morphology results at least in part from a cell cycle delay imposed by the Cdc28p-inhibitory kinase Swe1p. Mutations in three other genes (GIN4, encoding a kinase related to the Schizosaccharomyces pombe mitotic inducer Nim1p; CLA4, encoding a p21-activated kinase; and NAP1, encoding a Clb2p-interacting protein) also produce perturbations of septin organization associated with an Swe1p-dependent cell cycle delay. The effects of gin4, cla4, and nap1 mutations are additive, indicating that these proteins promote normal septin organization through pathways that are at least partially independent. In contrast, mutations affecting the other two Nim1p-related kinases in S. cerevisiae, Hsl1p and Kcc4p, produce no detectable effect on septin organization. However, deletion of HSL1, but not of KCC4, did produce a cell cycle delay under some conditions; this delay appears to reflect a direct role of Hsl1p in the regulation of Swe1p. As shown previously, Swe1p plays a central role in the morphogenesis checkpoint that delays the cell cycle in response to defects in bud formation. Swe1p is localized to the nucleus and to the daughter side of the mother bud neck prior to its degradation in G(2)/M phase. Both the neck localization of Swe1p and its degradation require Hsl1p and its binding partner Hsl7p, both of which colocalize with Swe1p at the daughter side of the neck. This localization is lost in mutants with perturbed septin organization, suggesting that the release of Hsl1p and Hsl7p from the neck may reduce their ability to inactivate Swe1p and thus contribute to the G(2) delay observed in such mutants. In contrast, treatments that perturb actin organization have little effect on Hsl1p and Hsl7p localization, suggesting that such treatments must stabilize Swe1p by another mechanism. The apparent dependence of Swe1p degradation on localization of the Hsl1p-Hsl7p-Swe1p module to a site that exists only in budded cells may constitute a mechanism for deactivating the morphogenesis checkpoint when it is no longer needed (i.e., after a bud has formed).
引用
收藏
页码:4049 / 4061
页数:13
相关论文
共 65 条
[1]   RELATIONSHIP OF ACTIN AND TUBULIN DISTRIBUTION TO BUD GROWTH IN WILD-TYPE AND MORPHOGENETIC-MUTANT SACCHAROMYCES-CEREVISIAE [J].
ADAMS, AEM ;
PRINGLE, JR .
JOURNAL OF CELL BIOLOGY, 1984, 98 (03) :934-945
[2]   Control of mitotic events by Nap1 and the Gin4 kinase [J].
Altman, R ;
Kellogg, D .
JOURNAL OF CELL BIOLOGY, 1997, 138 (01) :119-130
[3]  
[Anonymous], METHOD ENZYMOL
[4]  
Ausubel FM, 1995, CURRENT PROTOCOLS MO
[5]   High rates of actin filament turnover in budding yeast and roles for actin in establishment and maintenance of cell polarity revealed using the actin inhibitor latrunculin-A [J].
Ayscough, KR ;
Stryker, J ;
Pokala, N ;
Sanders, M ;
Crews, P ;
Drubin, DG .
JOURNAL OF CELL BIOLOGY, 1997, 137 (02) :399-416
[6]   PAK to the future [J].
Bagrodia, S ;
Cerione, RA .
TRENDS IN CELL BIOLOGY, 1999, 9 (09) :350-355
[7]   Nim1-related kinases coordinate cell cycle progression with the organization of the peripheral cytoskeleton in yeast [J].
Barral, Y ;
Parra, M ;
Bidlingmaier, S ;
Snyder, M .
GENES & DEVELOPMENT, 1999, 13 (02) :176-187
[8]   A SIMPLE AND EFFICIENT METHOD FOR DIRECT GENE DELETION IN SACCHAROMYCES-CEREVISIAE [J].
BAUDIN, A ;
OZIERKALOGEROPOULOS, O ;
DENOUEL, A ;
LACROUTE, F ;
CULLIN, C .
NUCLEIC ACIDS RESEARCH, 1993, 21 (14) :3329-3330
[9]   Cla4p, a Saccharomyces cerevisiae Cdc42p-activated kinase involved in cytokinesis, is activated at mitosis [J].
Benton, BK ;
Tinkelenberg, A ;
Gonzalez, I ;
Cross, FR .
MOLECULAR AND CELLULAR BIOLOGY, 1997, 17 (09) :5067-5076
[10]   Involvement of an actomyosin contractile ring in Saccharomyces cerevisiae cytokinesis [J].
Bi, E ;
Maddox, P ;
Lew, DJ ;
Salmon, ED ;
McMillan, JN ;
Yeh, E ;
Pringle, JR .
JOURNAL OF CELL BIOLOGY, 1998, 142 (05) :1301-1312