State-space representation for fractional order controllers

被引:207
作者
Raynaud, HF [1 ]
Zergaïnoh, A [1 ]
机构
[1] Univ Paris 13, Inst Galilee, Lab Transport & Traitement Informat, F-93430 Villetaneuse, France
关键词
distributed-parameter systems; linear systems; robust control; state-space realization;
D O I
10.1016/S0005-1098(00)00011-X
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article proposes an infinite-dimensional state-space realization for linear filters with transfer function C-d(s)corresponds toC(o)((1 + s/omega(b))/ (1 + s/omega(h)))(d), where 0 < omega(b) < omega(h) and 0 < d < 1. This exponentially stable representation is derived from the Taylor expansion at zero of the function (1 - z)(d), and is made up of an infinite number of first-order ordinary differential equations. Finite-dimensional approximations obtained by truncating this representation are shown to converge towards C-d in H-infinity. An example of feedback loop incorporating this approximation of C-d (car suspension) is presented, for which robustness of closed-loop resonance and step response overshoot vis-g-vis a Variation in the vehicle mass is achieved. (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1017 / 1021
页数:5
相关论文
共 9 条
[1]  
ASTROM KJ, 1997, P 4 ECC
[2]  
Bergeon B., 1990, Automatique Productique Informatique Industrielle, V24, P83
[3]  
Bode H, 1945, NETWORK ANAL FEEDBAC
[4]  
Curtain RF, 1995, An Introduction to Infinite-Dimensional Linear Systems Theory
[5]  
FLAJOLET P, 1990, SIAM J DISCRETE MATH, V2, P21
[6]   BOUNDARY FRACTIONAL DERIVATIVE CONTROL OF THE WAVE-EQUATION [J].
MBODJE, B ;
MONTSENY, G .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1995, 40 (02) :378-382
[7]   The CRONE suspension [J].
Oustaloup, A ;
Moreau, X ;
Nouillant, M .
CONTROL ENGINEERING PRACTICE, 1996, 4 (08) :1101-1108
[8]  
OUSTALOUP A, 1995, EUROPEAN J CONTROL, V1
[9]  
RAYNAUD HF, 1997, P 4 ECC