Evaluation of chain stiffness of partially oxidized polyguluronate

被引:49
作者
Lee, KY
Bouhadir, KH
Mooney, DJ
机构
[1] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Biol & Mat Sci, Ann Arbor, MI 48109 USA
[3] Amer Univ Beirut, Dept Chem, Beirut 110236, Lebanon
关键词
D O I
10.1021/bm025567h
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The chain stiffness of macromolecules is considered critical in their design and applications. This study utilizes polyguluronate derived from alginate, a typical polysaccharide widely utilized in many biomedical applications, as a model macromolecule to investigate how the chain stiffness can be tightly regulated by partial oxidation: Alginate has a backbone of inherently rigid alpha-L-guluronate (i.e., polyguluronate) and more flexible beta-D-mannuronate., The chain stiffness of the polyguluronate was specifically studied in this paper, as this component plays a critical role in the formation of alginate hydrogels with divalent cations and is the dominant factor in determining the chain stiffness of alginate. We have utilized size-exclusion chromatography, equipped with refractive index, viscosity, and light-scattering detectors, to determine the intrinsic viscosity and the weight-average molecular Weight of each fraction of samples. The chain stiffness of partially oxidized polyguluronate was then evaluated from the exponent of the Mark-Houwink equation and the persistence length. We have found that partial oxidation can be used to tightly regulate the steric hindrance and stiffness of the polyguluronate backbone. This approach to control the chain stiffness of inherently rigid polysaccharides by partial oxidation may find many applications in biomedical utilization of these materials.
引用
收藏
页码:1129 / 1134
页数:6
相关论文
共 40 条
[2]   Growth factor delivery for tissue engineering [J].
Babensee, JE ;
McIntire, LV ;
Mikos, AG .
PHARMACEUTICAL RESEARCH, 2000, 17 (05) :497-504
[3]  
Billmeyer F.W., 1984, TXB POLYM SCI
[5]   Synthesis of cross-linked poly(aldehyde guluronate) hydrogels [J].
Bouhadir, KH ;
Hausman, DS ;
Mooney, DJ .
POLYMER, 1999, 40 (12) :3575-3584
[6]  
Chang SCN, 2001, J BIOMED MATER RES, V55, P503, DOI 10.1002/1097-4636(20010615)55:4<503::AID-JBM1043>3.0.CO
[7]  
2-S
[8]  
DRAGET KI, 1990, TIBTECH, V8, P71
[9]  
Glicklis R, 2000, BIOTECHNOL BIOENG, V67, P344, DOI 10.1002/(SICI)1097-0290(20000205)67:3<344::AID-BIT11>3.0.CO
[10]  
2-2