Dissecting the ubiquitin pathway by mass spectrometry

被引:60
作者
Xu, Ping [1 ]
Peng, Junmin [1 ]
机构
[1] Emory Univ, Dept Human Genet, Ctr Neurodegenerat Dis, Atlanta, GA 30322 USA
来源
BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS | 2006年 / 1764卷 / 12期
关键词
mass spectrometry ubiquitin;
D O I
10.1016/j.bbapap.2006.09.004
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Protein modification by ubiquitin is a central regulatory mechanism in eukaryotic cells. Recent proteomics developments in mass spectrometry enable systematic analysis of cellular components in the ubiquitin pathway. Here, we review the advances in analyzing ubiquitinated substrates, determining modified lysine residues, quantifying polyubiquitin chain topologies, as well as profiling deubiquitinating enzymes based on the activity. Moreover, proteomic approaches have been developed for probing the interactome of proteasome and for identifying proteins with ubiquitin-binding domains. Similar strategies have been applied on the studies of the modification by ubiquitin-like proteins as well. These strategies are discussed with respect to their advantages, limitations and potential improvements. While the utilization of current methodologies has rapidly expanded the scope of protein modification by the ubiquitin family, a more active role is anticipated in the functional studies with the emergence of quantitative mass spectrometry. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1940 / 1947
页数:8
相关论文
共 82 条
[1]   Mass spectrometry-based proteomics [J].
Aebersold, R ;
Mann, M .
NATURE, 2003, 422 (6928) :198-207
[2]   Mechanism and function of deubiquitinating enzymes [J].
Amerik, AY ;
Hochstrasser, M .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2004, 1695 (1-3) :189-207
[3]   STRESS RESISTANCE IN SACCHAROMYCES-CEREVISIAE IS STRONGLY CORRELATED WITH ASSEMBLY OF A NOVEL TYPE OF MULTIUBIQUITIN CHAIN [J].
ARNASON, T ;
ELLISON, MJ .
MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (12) :7876-7883
[4]   Otubains: a new family of cysteine proteases in the ubiquitin pathway [J].
Balakirev, MY ;
Tcherniuk, SO ;
Jaquinod, M ;
Chroboczek, J .
EMBO REPORTS, 2003, 4 (05) :517-522
[5]   Chemistry-based functional proteomics reveals novel members of the deubiquitinating enzyme [J].
Borodovsky, A ;
Ovaa, H ;
Kolli, N ;
Gan-Erdene, T ;
Wilkinson, KD ;
Ploegh, HL ;
Kessler, BM .
CHEMISTRY & BIOLOGY, 2002, 9 (10) :1149-1159
[6]   Ubiquitination on nonlysine residues by a viral E3 ubiquitin ligase [J].
Cadwell, K ;
Coscoy, L .
SCIENCE, 2005, 309 (5731) :127-130
[7]   Preferred in vivo ubiquitination sites [J].
Catic, A ;
Collins, C ;
Church, GM ;
Ploegh, HL .
BIOINFORMATICS, 2004, 20 (18) :3302-3307
[8]   A MULTIUBIQUITIN CHAIN IS CONFINED TO SPECIFIC LYSINE IN A TARGETED SHORT-LIVED PROTEIN [J].
CHAU, V ;
TOBIAS, JW ;
BACHMAIR, A ;
MARRIOTT, D ;
ECKER, DJ ;
GONDA, DK ;
VARSHAVSKY, A .
SCIENCE, 1989, 243 (4898) :1576-1583
[9]   Ubiquitin signalling in the NF-κB pathway [J].
Chen, ZJJ .
NATURE CELL BIOLOGY, 2005, 7 (08) :758-U19
[10]   N-terminal ubiquitination: more protein substrates join in [J].
Ciechanover, A ;
Ben-Saadon, R .
TRENDS IN CELL BIOLOGY, 2004, 14 (03) :103-106