Improved protocols for quantitative determination of metabolites from biological samples using high performance ionic-exchange chromatography with conductimetric and pulsed amperometric detection

被引:50
作者
Groussac, E [1 ]
Ortiz, M [1 ]
François, J [1 ]
机构
[1] Inst Natl Sci Appl, Dept Genie Biochim, Ctr Bioingn Gilbert Durand, CNRS,UMR 5504, F-31077 Toulouse 04, France
关键词
HPIC; sugar phosphates; organic acids; metabolic regulation;
D O I
10.1016/S0141-0229(00)00163-0
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Simple and reliable protocols are described for an extensive analysis of metabolites in extracts from different biological sources. The separation was performed by high performance ionic-exchange chromatography (HPIC) at alkaline pH using two types of chromatography columns and two detection methods. Organic acids and inorganic anions were separated on an ionPac AS11 column using a 0.5 to 35 mM NaOH gradient. Detection limits in the range of milligrams per liter were achieved by use of a conductivity detector equipped with an anion self-regenerating suppressor. Twelve phosphorylated compounds belonging to the glycolytic and the pentose phosphate pathways could be resolved on a CarboPac PA1 column using a NaOH/Na-acetate gradient. Quantification was achieved by pulsed amperometry, with detection limits in the micromolar range. Cell extracts obtained by extraction in boiling buffered ethanol described previously could be directly injected onto HPIC columns for the separation of metabolites because the extraction procedure affected neither the retention time nor the stability of most of the metabolites, and yielded very clean chromatograms. These improved protocols were applied for a dynamic analysis of intracellular metabolites in Saccharomyces cerevisiae in response to a glucose pulse. (C) 2000 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:715 / 723
页数:9
相关论文
共 37 条
[1]   SINGLE-RUN SEPARATION AND DETECTION OF MULTIPLE METABOLIC INTERMEDIATES BY ANION-EXCHANGE HIGH-PERFORMANCE LIQUID-CHROMATOGRAPHY AND APPLICATION TO CELL POOL EXTRACTS PREPARED FROM ESCHERICHIA-COLI [J].
BHATTACHARYA, M ;
FUHRMAN, L ;
INGRAM, A ;
NICKERSON, KW ;
CONWAY, T .
ANALYTICAL BIOCHEMISTRY, 1995, 232 (01) :98-106
[2]   TREHALOSE-6-PHOSPHATE, A NEW REGULATOR OF YEAST GLYCOLYSIS THAT INHIBITS HEXOKINASES [J].
BLAZQUEZ, MA ;
LAGUNAS, R ;
GANCEDO, C ;
GANCEDO, JM .
FEBS LETTERS, 1993, 329 (1-2) :51-54
[3]   Cloning of a second gene encoding 6-phosphofructo-2-kinase in yeast, and characterization of mutant strains without fructose-2,6-bisphosphate [J].
Boles, E ;
Gohlmann, HWH ;
Zimmerman, FK .
MOLECULAR MICROBIOLOGY, 1996, 20 (01) :65-76
[4]   A METHOD FOR THE DETERMINATION OF CHANGES OF GLYCOLYTIC METABOLITES IN YEAST ON A SUBSECOND TIME SCALE USING EXTRACTION AT NEUTRAL PH [J].
DEKONING, W ;
VANDAM, K .
ANALYTICAL BIOCHEMISTRY, 1992, 204 (01) :118-123
[5]  
DENTON RM, 1976, METABOLIC REGULATION
[6]   Exploring the metabolic and genetic control of gene expression on a genomic scale [J].
DeRisi, JL ;
Iyer, VR ;
Brown, PO .
SCIENCE, 1997, 278 (5338) :680-686
[7]   NUCLEOTIDE POOLS OF GROWING, SYNCHRONIZED AND STRESSED CULTURES OF SACCHAROMYCES-CEREVISIAE [J].
DITZELMULLER, G ;
WOHRER, W ;
KUBICEK, CP ;
ROHR, M .
ARCHIVES OF MICROBIOLOGY, 1983, 135 (01) :63-67
[8]  
Fell D. A., 1996, UNDERSTANDING CONTRO
[9]   METABOLIC CONTROL ANALYSIS - A SURVEY OF ITS THEORETICAL AND EXPERIMENTAL DEVELOPMENT [J].
FELL, DA .
BIOCHEMICAL JOURNAL, 1992, 286 :313-330
[10]   THE MECHANISM BY WHICH GLUCOSE INCREASES FRUCTOSE 2,6-BISPHOSPHATE CONCENTRATION IN SACCHAROMYCES-CEREVISIAE - A CYCLIC-AMP-DEPENDENT ACTIVATION OF PHOSPHOFRUCTOKINASE-2 [J].
FRANCOIS, J ;
VANSCHAFTINGEN, E ;
HERS, HG .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1984, 145 (01) :187-193