Structure of physical crystalline membranes within the self-consistent screening approximation

被引:56
作者
Gazit, Doron [1 ]
机构
[1] Univ Washington, Inst Nucl Theory, Seattle, WA 98195 USA
来源
PHYSICAL REVIEW E | 2009年 / 80卷 / 04期
关键词
bending; elasticity; membranes; Poisson ratio; shear modulus; TETHERED MEMBRANES; FLAT PHASE; FLUCTUATIONS; BEHAVIOR;
D O I
10.1103/PhysRevE.80.041117
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The anomalous exponents governing the long-wavelength behavior of the flat phase of physical crystalline membranes are calculated within a self-consistent screening approximation (SCSA) applied to second order expansion in 1/d(C) (d(C) is the codimension), extending the seminal work of Le Doussal and Radzihovsky [Phys. Rev. Lett. 69, 1209 (1992)]. In particular, the bending rigidity is found to harden algebraically in the long-wavelength limit with an exponent eta=0.789..., which is used to extract the elasticity softening exponent eta(u)=0.422..., and the roughness exponent zeta=0.605.... The scaling relation eta(u)=2-2 eta is proven to hold to all orders in SCSA. Further, applying the SCSA to an expansion in 1/d(C), is found to be essential, as no solution to the self-consistent equations is found in a two-bubble level, which is the naive second-order expansion. Surprisingly, even though the expansion parameter for physical membrane is 1/d(C)=1, the SCSA applied to second-order expansion deviates only slightly from the first order, increasing zeta by mere 0.016. This supports the high quality of the SCSA for physical crystalline membranes, as well as improves the comparison to experiments and numerical simulations of these systems. The prediction of SCSA applied to first order expansion for the Poisson ratio is shown to be exact to all orders.
引用
收藏
页数:6
相关论文
共 25 条
[1]   Non-Hermitian Luttinger liquids and flux line pinning in planar superconductors -: art. no. P10003 [J].
Affleck, I ;
Hofstetter, W ;
Nelson, DR ;
Shollwöck, U .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,
[2]   FLUCTUATIONS AND LOWER CRITICAL DIMENSIONS OF CRYSTALLINE MEMBRANES [J].
ARONOVITZ, J ;
GOLUBOVIC, L ;
LUBENSKY, TC .
JOURNAL DE PHYSIQUE, 1989, 50 (06) :609-631
[3]   FLUCTUATIONS OF SOLID MEMBRANES [J].
ARONOVITZ, JA ;
LUBENSKY, TC .
PHYSICAL REVIEW LETTERS, 1988, 60 (25) :2634-2637
[4]   The flat phase of crystalline membranes [J].
Bowick, MJ ;
Catterall, SM ;
Falcioni, M ;
Thorleifsson, G ;
Anagnostopoulos, KN .
JOURNAL DE PHYSIQUE I, 1996, 6 (10) :1321-1345
[5]   SELF-CONSISTENT SCREENING CALCULATION OF CRITICAL EXPONENT ETA [J].
BRAY, AJ .
PHYSICAL REVIEW LETTERS, 1974, 32 (25) :1413-1416
[6]   CRUMPLING TRANSITION IN ELASTIC MEMBRANES - RENORMALIZATION-GROUP TREATMENT [J].
DAVID, F ;
GUITTER, E .
EUROPHYSICS LETTERS, 1988, 5 (08) :709-713
[7]  
*EPAPS, EPLEEE880060910 EPAP
[8]   The Poisson ratio of crystalline surfaces [J].
Falcioni, M ;
Bowick, MJ ;
Guitter, E ;
Thorleifsson, G .
EUROPHYSICS LETTERS, 1997, 38 (01) :67-72
[9]   Correlation between charge inhomogeneities and structure in graphene and other electronic crystalline membranes [J].
Gazit, Doron .
PHYSICAL REVIEW B, 2009, 80 (16)
[10]   THERMODYNAMICAL BEHAVIOR OF POLYMERIZED MEMBRANES [J].
GUITTER, E ;
DAVID, F ;
LEIBLER, S ;
PELITI, L .
JOURNAL DE PHYSIQUE, 1989, 50 (14) :1787-1819