Analysis of electrochemical and thermal behavior of Li-ion cells

被引:368
作者
Srinivasan, V [1 ]
Wang, CY
机构
[1] Penn State Univ, Electrochem Engine Ctr, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Mech Engn, University Pk, PA 16802 USA
[3] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
关键词
D O I
10.1149/1.1526512
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
This paper seeks to gain a better understanding of the thermal behavior of Li-ion cells using a previously developed two-dimensional, first principles-based thermal-electrochemical modeling approach. The model incorporates the reversible, irreversible, and ohmic heats in the matrix and solution phases, and the temperature dependence of the various transport, kinetic, and mass-transfer parameters based on Arrhenius expressions. Experimental data on the entropic contribution for the manganese oxide spinal and carbon electrodes, recently published in the literature, are also incorporated into the model in order to gauge the importance of this term in the overall heat generation. Simulations were used to estimate the thermal and electrical energy and the active material utilization at various rates in order to understand the effect of temperature on the electrochemistry and vice versa. In addition, the methodology of using experimental data, instead of an electrochemical model, to determine the heat-generation rate is examined by considering the differences between the local and lumped thermal models, and the assumption of using heat generation rate determined at a particular thermal environment under other conditions. Model simulations are used to gain insight into the appropriateness of various approximations in developing comprehensive thermal models for Li-ion cells. (C) 2002 The Electrochemical Society.
引用
收藏
页码:A98 / A106
页数:9
相关论文
共 26 条
[1]   Entropy changes due to structural transformation in the graphite anode and phase change of the LiCoO2 cathode [J].
Al Hallaj, S ;
Venkatachalapathy, R ;
Prakash, J ;
Selman, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (07) :2432-2436
[2]   Temperature and current distribution in thin-film batteries [J].
Baker, DR ;
Verbrugge, MW .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (07) :2413-2424
[3]   A GENERAL ENERGY-BALANCE FOR BATTERY SYSTEMS [J].
BERNARDI, D ;
PAWLIKOWSKI, E ;
NEWMAN, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1985, 132 (01) :5-12
[4]   Influence of some design variables on the thermal behavior of a lithium-ion cell [J].
Botte, GG ;
Johnson, BA ;
White, RE .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (03) :914-923
[5]   Thermal analysis of lithium-ion batteries [J].
Chen, YF ;
Evans, JW .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (09) :2708-2712
[6]   Comparison of modeling predictions with experimental data from plastic lithium ion cells [J].
Doyle, M ;
Newman, J ;
Gozdz, AS ;
Schmutz, CN ;
Tarascon, JM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (06) :1890-1903
[7]   MODELING OF GALVANOSTATIC CHARGE AND DISCHARGE OF THE LITHIUM POLYMER INSERTION CELL [J].
DOYLE, M ;
FULLER, TF ;
NEWMAN, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1993, 140 (06) :1526-1533
[8]   SIMULATION AND OPTIMIZATION OF THE DUAL LITHIUM ION INSERTION CELL [J].
FULLER, TF ;
DOYLE, M ;
NEWMAN, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1994, 141 (01) :1-10
[9]  
GOMADAM PM, 2001, ELECTROCHEMICAL SOC
[10]   Thermal-electrochemical modeling of battery systems [J].
Gu, WB ;
Wang, CY .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (08) :2910-2922