Hydrogels in controlled release formulations: Network design and mathematical modeling

被引:1310
作者
Lin, Chien-Chi
Metters, Andrew T.
机构
[1] Clemson Univ, Dept Chem & Biomol Engn, Clemson, SC 29631 USA
[2] Clemson Univ, Dept Bioengn, Clemson, SC 29631 USA
关键词
hydrogel; drug delivery; modeling; controlled release; diffusion; degradation;
D O I
10.1016/j.addr.2006.09.004
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Over the past few decades, advances in hydrogel technologies have spurred development in many biomedical applications including controlled drug delivery. Many novel hydrogel-based delivery matrices have been designed and fabricated to fulfill the ever-increasing needs of the pharmaceutical and medical fields. Mathematical modeling plays an important role in facilitating hydrogel network design by identifying key parameters and molecule release mechanisms. The objective of this article is to review the fundamentals and recent advances in hydrogel network design as well as mathematical modeling approaches related to controlled molecule release from hydrogels. In the first section, the niche roles of hydrogels in controlled release, molecule release mechanisms, and hydrogel design criteria for controlled release applications are discussed. Novel hydrogel systems for drug delivery including biodegradable, smart, and biomimetic hydrogels are reviewed in the second section. Several mechanisms have been elucidated to describe molecule release from polymer hydrogel systems including diffusion, swelling, and chemically-controlled release. The focus of the final part of this article is discussion of emerging hydrogel delivery systems and challenges associated with modeling the performance of these devices. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1379 / 1408
页数:30
相关论文
共 197 条
[1]   PREPARATION, CHARACTERIZATION AND MUCOADHESIVE INTERACTIONS OF POLY(METHACRYLIC ACID) COPOLYMERS WITH RAT MUCOSA [J].
ACHAR, L ;
PEPPAS, NA .
JOURNAL OF CONTROLLED RELEASE, 1994, 31 (03) :271-276
[2]   Novel pH-sensitive hydrogels with adjustable swelling kinetics [J].
Akala, EO ;
Kopecková, P ;
Kopecek, J .
BIOMATERIALS, 1998, 19 (11-12) :1037-1047
[3]   Nasal delivery of vaccines [J].
Almeida, AJ ;
Alpar, HO .
JOURNAL OF DRUG TARGETING, 1996, 3 (06) :455-467
[4]   Solute diffusion within hydrogels. Mechanisms and models [J].
Amsden, B .
MACROMOLECULES, 1998, 31 (23) :8382-8395
[5]   Diffusion of glucose and insulin in a swelling N-isopropylacrylamide gel [J].
Andersson, M ;
Axelsson, A ;
Zacchi, G .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 1997, 157 (02) :199-208
[6]  
[Anonymous], 1976, ACS S SERIES
[7]   In situ forming degradable networks and their application in tissue engineering and drug delivery [J].
Anseth, KS ;
Metters, AT ;
Bryant, SJ ;
Martens, PJ ;
Elisseeff, JH ;
Bowman, CN .
JOURNAL OF CONTROLLED RELEASE, 2002, 78 (1-3) :199-209
[8]   Functional hydrogel structures for autonomous flow control inside microfluidic channels [J].
Beebe, DJ ;
Moore, JS ;
Bauer, JM ;
Yu, Q ;
Liu, RH ;
Devadoss, C ;
Jo, BH .
NATURE, 2000, 404 (6778) :588-+
[9]   SWELLING AND DRUG-RELEASE IN HYDROGEL MATRICES - POLYMER VISCOSITY AND MATRIX POROSITY EFFECTS [J].
BETTINI, R ;
COLOMBO, P ;
MASSIMO, G ;
CATELLANI, PL ;
VITALI, T .
EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES, 1994, 2 (03) :213-219
[10]  
Bird R.B., 2006, TRANSPORT PHENOMENA, Vsecond, DOI 10.1002/aic.690070245