Conservation of sigma-core RNA polymerase proximity relationships between the enhancer-independent and enhancer-dependent sigma classes

被引:35
作者
Wigneshweraraj, SR
Fujita, N
Ishihama, A
Buck, M
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Biol, London SW7 2AZ, England
[2] Natl Inst Genet, Dept Mol Genet, Shizuoka 411, Japan
关键词
enhancers; sigma factors; protein footprinting; RNA polymerase;
D O I
10.1093/emboj/19.12.3038
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Two distinct classes of RNA polymerase sigma factors (sigma) exist in bacteria and are largely unrelated in primary amino acid sequence and their modes of transcription activation. Using tethered iron chelate (Fe-BABE) derivatives of the enhancer-dependent sigma 54, we mapped several sites of proxmity to the beta and beta' subunits of the core RNA polymerase. Remarkably, most sites localized to those previously identified as close to the enhancer-independent sigma(70) and sigma(38). This indicates a common use of sets of sequences in core for interacting with the two sigma classes. Some sites chosen in sigma(54) for modification with Fe-BABE were positions, which when mutated, deregulate the sigma(54)- holoenzyme and allow activator-independent initiation and holoenzyme isomerization. We infer that these sites in sigma(54) may be involved in interactions with the core that contribute to maintenance of alternative states of the holoenzyme needed for either the stable closed promoter complex conformation or the isomerized holoenzyme conformation associated with the open promoter complex. One site of sigma(54) proximity to the core is apparently not evident with sigma(70), and may represent a specialized interaction.
引用
收藏
页码:3038 / 3048
页数:11
相关论文
共 53 条
[1]   Localization of a σ70 binding site on the N terminus of the Escherichia coli RNA polymerase β′ subunit [J].
Arthur, TM ;
Burgess, RR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (47) :31381-31387
[2]  
CANNELLA B, 1994, J NEUROIMMUNOL, V54, P1
[3]   CORE RNA-POLYMERASE AND PROMOTER DNA INTERACTIONS OF PURIFIED DOMAINS OF SIGMA(N) - BIPARTITE FUNCTIONS [J].
CANNON, W ;
MISSAILIDIS, S ;
SMITH, C ;
COTTIER, A ;
AUSTIN, S ;
MOORE, M ;
BUCK, M .
JOURNAL OF MOLECULAR BIOLOGY, 1995, 248 (04) :781-803
[4]   Amino-terminal sequences of σN (σ54) inhibit RNA polymerase isomerization [J].
Cannon, W ;
Gallegos, MT ;
Casaz, P ;
Buck, M .
GENES & DEVELOPMENT, 1999, 13 (03) :357-370
[5]   Two domains within sigma(N) (sigma(54)) cooperate for DNA binding [J].
Cannon, WV ;
Chaney, MK ;
Wang, XY ;
Buck, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (10) :5006-5011
[6]   Systematic analysis of σ54 N-terminal sequences identifies regions involved in positive and negative regulation of transcription [J].
Casaz, P ;
Gallegos, MT ;
Buck, M .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 292 (02) :229-239
[7]   Probing the assembly of transcription initiation complexes through changes in sigma(N) protease sensitivity [J].
Casaz, P ;
Buck, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (22) :12145-12150
[8]   Region I modifies DNA-binding domain conformation of sigma 54 within the holoenzyme [J].
Casaz, P ;
Buck, M .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 285 (02) :507-514
[9]   The sigma 54 DNA-binding domain includes a determinant of enhancer responsiveness [J].
Chaney, M ;
Buck, M .
MOLECULAR MICROBIOLOGY, 1999, 33 (06) :1200-1209
[10]   POSITIVE AND NEGATIVE EFFECTS OF DNA BENDING ON ACTIVATION OF TRANSCRIPTION FROM A DISTANT SITE [J].
CLAVERIEMARTIN, F ;
MAGASANIK, B .
JOURNAL OF MOLECULAR BIOLOGY, 1992, 227 (04) :996-1008