Background: Ringer's lactate (RL), the current standard resuscitation fluid, potentiates neutrophil activation and is associated with pulmonary inflammation. Resuscitation with hypertonic saline and pentoxifylline (HSPTX) has been shown to attenuate hemorrhagic. shock-induced injury when compared with RL. Because the neutrophil plays a major role in post-shock inflammation, we hypothesized that HSPTX reduces pulmonary inflammation after resuscitation in comparison to RL. Methods: Sprague-Dawley rats underwent controlled shock and were resuscitated with RL (32 mL/kg) or HSPTX (4 mL/kg 7.5% NaCl + pentoxifylline 25 mg/kg). Animals who did not undergo shock or resus-citation served as controls. After 24 hours, bronchoalveolar lavage fluid (BALF) and lung tissue were collected. Cytokine induced neutrophil chemoattractant (CINC) was measured in BALF by enzyme-linked immunosorbent assay. Matrix metalloproteinases (MMP)-2 and -9 were measured by zymography. Hemeoxygenase-1 (HO-1) was assessed by Western blot and immunohistochemistry. Results: HSPTX resuscitation led to a 62% decrease in CINC levels compared with RL (p < 0.01). BALF MMP-2 expression was attenuated by 11% with HSPTX (p = 0.09). Lung MMP-2 and MMP-9 expression was reduced by 89% (p < 0.01) and 76%, respectively (p < 0.05). Lung HO-1 expression declined by 34% with HSPTX in comparison to RL (p < 0.01), indicating less oxidative injury. Lung immunohistochemistry localized HO-1 to neutrophils, macrophages, and airway epithelial cells. Conclusion: Collectively, the attenuation of pulmonary inflammation with HSPTX after shock when compared with RL is associated with downregulation of neutrophil activation, oxidative stress, and proinflammatory mediator production.