Penetration depth of light re-emitted by a diffusive medium: theoretical and experimental investigation

被引:116
作者
Del Bianco, S
Martelli, F
Zaccanti, G
机构
[1] Univ Florence, Dipartimento Fis, I-50019 Florence, Italy
[2] INFM, I-50019 Florence, Italy
关键词
D O I
10.1088/0031-9155/47/23/301
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The depth at which photons penetrate into a diffusive medium before being re-emitted has been investigated with reference to a semi-infinite homogeneous medium illuminated by a pencil beam. By using the diffusion equation analytical expressions have been obtained for the probability that photons penetrate at a certain depth before being detected, and for the mean path length they travel inside each layer of the medium. Expressions have been obtained both for the cw and the time domain, and simple approximate scaling relationships describing the dependence on the scattering properties of the medium have been found. For time-resolved measurements both the probability and the mean path length are expected to be independent of the distance from the light beam at which the detector is placed and of the absorption coefficient of the medium. The penetration depth increases as the time of flight increases. In contrast, for cw measurements both the probability and the mean path length strongly depend on the distance and absorption. The penetration depth increases as the distance increases or absorption decreases. The accuracy of the analytical expressions has been demonstrated by comparisons with cw experimental results. The penetration depth and the mean path length provide useful information, for instance, for measurements of tissue oxygenation and for functional imaging of muscle and brain. In particular, the depth reached by received photons provides overall information on the volume of the tissue actually investigated, while the mean path is strictly related to the sensitivity to local variations of absorption.
引用
收藏
页码:4131 / 4144
页数:14
相关论文
共 24 条
[1]   THE THEORETICAL BASIS FOR THE DETERMINATION OF OPTICAL PATHLENGTHS IN TISSUE - TEMPORAL AND FREQUENCY-ANALYSIS [J].
ARRIDGE, SR ;
COPE, M ;
DELPY, DT .
PHYSICS IN MEDICINE AND BIOLOGY, 1992, 37 (07) :1531-1560
[2]   The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics [J].
Boas, DA ;
Gaudette, T ;
Strangman, G ;
Cheng, XF ;
Marota, JJA ;
Mandeville, JB .
NEUROIMAGE, 2001, 13 (01) :76-90
[3]   Photon migration through a turbid slab described by a model based on diffusion approximation .2. Theory [J].
Contini, D ;
Martelli, F ;
Zaccanti, G .
APPLIED OPTICS, 1997, 36 (19) :4587-4599
[4]   SYSTEM FOR LONG-TERM MEASUREMENT OF CEREBRAL BLOOD AND TISSUE OXYGENATION ON NEWBORN-INFANTS BY NEAR-INFRARED TRANS-ILLUMINATION [J].
COPE, M ;
DELPY, DT .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 1988, 26 (03) :289-294
[5]   Compact tissue oximeter based on dual-wavelength multichannel time-resolved reflectance [J].
Cubeddu, R ;
Pifferi, A ;
Taroni, P ;
Torricelli, A ;
Valentini, G .
APPLIED OPTICS, 1999, 38 (16) :3670-3680
[6]  
CUI WJ, 1991, P SOC PHOTO-OPT INS, V1431, P180, DOI 10.1117/12.44189
[7]   ESTIMATION OF OPTICAL PATHLENGTH THROUGH TISSUE FROM DIRECT TIME OF FLIGHT MEASUREMENT [J].
DELPY, DT ;
COPE, M ;
VANDERZEE, P ;
ARRIDGE, S ;
WRAY, S ;
WYATT, J .
PHYSICS IN MEDICINE AND BIOLOGY, 1988, 33 (12) :1433-1442
[8]  
FENG SC, 1993, P SOC PHOTO-OPT INS, V1888, P78, DOI 10.1117/12.154624
[9]   A theoretical study of the signal contribution of regions of the adult head to near-infrared spectroscopy studies of visual evoked responses [J].
Firbank, M ;
Okada, E ;
Delpy, DT .
NEUROIMAGE, 1998, 8 (01) :69-78
[10]   On-line optical imaging of the human brain with 160-ms temporal resolution [J].
Franceschini, MA ;
Toronov, V ;
Filiaci, ME ;
Gratton, E ;
Fantini, S .
OPTICS EXPRESS, 2000, 6 (03) :49-57